【題目】某屆奧運(yùn)會上,中國隊以26金18銀26銅的成績稱金牌榜第三、獎牌榜第二,某校體育愛好者在高三 年級一班至六班進(jìn)行了“本屆奧運(yùn)會中國隊表現(xiàn)”的滿意度調(diào)查(結(jié)果只有“滿意”和“不滿意”兩種),從被調(diào)查的學(xué)生中隨機(jī)抽取了50人,具體的調(diào)查結(jié)果如下表:

(1)在高三年級全體學(xué)生中隨機(jī)抽取一名學(xué)生,由以上統(tǒng)計數(shù)據(jù)估計該生持滿意態(tài)度的概率;

(2)若從一班至二班的調(diào)查對象中隨機(jī)選取4人進(jìn)行追蹤調(diào)查,記選中的4人中對“本屆奧運(yùn)會中國隊表現(xiàn)”不滿意的人數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

【答案】(;()分布列見解析,.

【解析】試題分析:()在被抽取的人中,持滿意態(tài)度的學(xué)生共人,據(jù)此估計高三年級全體學(xué)生持滿意態(tài)度的概率為;()分別計算隨機(jī)變量取為的概率,進(jìn)而列出分布列.

試題解析:()在被抽取的50人中,持滿意態(tài)度的學(xué)生共36人,

持滿意態(tài)度的頻率為,

據(jù)此估計高三年級全體學(xué)生持滿意態(tài)度的概率為

的所有可能取值為0,12,3

,

,

所以的分布列為:


0

1

2

3






所以的期望值為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)關(guān)于的一元二次方程.

(1)若是從0,1,2,3四個數(shù)中任取的一個數(shù),是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實(shí)根的概率;

(2)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】上周某校高三年級學(xué)生參加了數(shù)學(xué)測試,年部組織任課教師對這次考試進(jìn)行成績分析.現(xiàn)從中抽取80名學(xué)生的數(shù)學(xué)成績(均為整數(shù))的頻率分布直方圖如圖所示.

(Ⅰ)估計這次月考數(shù)學(xué)成績的平均分和眾數(shù);

(Ⅱ)假設(shè)抽出學(xué)生的數(shù)學(xué)成績在段各不相同,且都超過94分.若將頻率視為概率,現(xiàn)用簡單隨機(jī)抽樣的方法,從95,96,97,98,99,100這6個數(shù)字中任意抽取2個數(shù),有放回地抽取3次,記這3次抽取中恰好有兩名學(xué)生的數(shù)學(xué)成績的次數(shù)為,求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1,求函數(shù)的極值和單調(diào)區(qū)間;

2若在區(qū)間上至少存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從社會效益和經(jīng)濟(jì)效益出發(fā),某地投入資金進(jìn)行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè).根據(jù)規(guī)劃,本年度投入萬元,以后每年投入將比上年減少.本年度當(dāng)?shù)芈糜螛I(yè)收入估計為萬元,由于該項建設(shè)對旅游業(yè)的促進(jìn)作用,預(yù)計今后的旅游業(yè)收入每年會比上年增加

)設(shè)年內(nèi)(本年度為第一年)總投入為萬元,旅游業(yè)總收入為萬元.寫出的表達(dá)式;

)至少經(jīng)過幾年旅游業(yè)的總收入才能超過總投入?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民休閑觀光,市政府計劃在半徑為200,圓心角為的扇形廣場內(nèi)(如圖所示),沿邊界修建觀光道路,其中、分別在線段、上,且兩點(diǎn)間距離為定長

1)當(dāng)時,求觀光道段的長度;

2)為提高觀光效果,應(yīng)盡量增加觀光道路總長度,試確定圖中、兩點(diǎn)的位置,使觀光道路總長度達(dá)到最長?并求出總長度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)).

(1)當(dāng),求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)若函數(shù)上為減函數(shù),求實(shí)數(shù)的最小值;

(3)若存在,使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C 的離心率為 ,橢圓Cy軸交于AB兩點(diǎn),|AB|=2

)求橢圓C的方程;

)已知點(diǎn)P是橢圓C上的動點(diǎn),且直線PA,PB與直線x=4分別交于M、N兩點(diǎn),是否存在點(diǎn)P,使得以MN為直徑的圓經(jīng)過點(diǎn)(2,0)?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線平面,直線平面,給出下列命題:

; ;

;

其中正確命題的序號是

A.①②③ B.②③④ C.①③ D.②④

查看答案和解析>>

同步練習(xí)冊答案