橢圓
有公共的焦點F
1,F(xiàn)
2,P是兩曲線的一個交點,則
=( )
因為兩曲線有公共焦點,所以
,設(shè)
,
則
,
,
,應(yīng)選C.
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
.
與
有相同的離心率,過點
的直線
與
,
依次交于A,C,D,B四點(如圖).當直線
過
的上頂點時, 直線
的傾斜角為
.
(1)求橢圓
的方程;
(2)求證:
;
(3)若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)已知圓
及定點
,點Q是圓A上的動點,點G在BQ上,點P在QA上,且滿足
,
=0.
(I)求P點所在的曲線C的方程;
(II)過點B的直線
與曲線C交于M、N兩點,直線
與y軸交于E點,若
為定值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在直角坐標系xOy中,已知中心在原點,離心率為
的橢圓E的一個焦點為圓C:x
2+y
2-4x+2=0的圓心.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)P是橢圓E上一點,過P作兩條斜率之積為
的直線l
1,l
2.當直線l
1,l
2都與圓C相切時,求P的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知圓方程為
(1)求圓心軌跡的參數(shù)方程
和普通方程;
(2)點
是(1)中曲線
上的動點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在原點,焦點在x軸上的橢圓離心率為
,且經(jīng)過點
,過橢圓的左焦點作直線
交橢圓于A、B兩點,以O(shè)A、OB為鄰邊作平行四邊形OAPB。
(1)求橢圓E的方程
(2)現(xiàn)將橢圓E上的點的縱坐標保持不變,橫坐標變?yōu)樵瓉淼囊话,求所得曲線的焦點坐標和離心率
(3)是否存在直線
,使得四邊形OAPB為矩形?若存在,求出直線
的方程。若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓中心在原點,焦點在x軸上,離心率e=
,它與直線x+y+1=0交于P、Q兩點,若OP⊥OQ,求橢圓方程。(O為原點)。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如右圖,設(shè)由拋物線
與過它的焦點F的直線
所圍成封閉曲面圖形的面積為
(陰影部分)。
(1)設(shè)直線
與拋物線
交于兩點
,且
,直線
的斜率為
,試用
表示
;
(2)求
的最小值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
、
是橢圓
(
>
>0)的兩個焦點,
為橢圓
上一點,且
.若
的面積為9,則
="____________."
查看答案和解析>>