【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ( ≠ ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) =α +(1﹣α) ,其中0<α< ,則n,m的大小關(guān)系為( )
A.n<m
B.n>m
C.n=m
D.不能確定
【答案】A
【解析】解:法一:不妨令n=4,m=6,設(shè)樣本(x1 , x2…,xn)的平均數(shù)為 =6,
樣本(y1 , y2 , …,ym)的平均數(shù)為 =4,
所以樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) =α +(1﹣α) =6α+(1﹣α)4= ,
解得α=0.4,滿(mǎn)足題意.
法二:依題意nx+my=(m+n)[ax+(1﹣a)y],
∴n(x﹣y)=a(m+n)(x﹣y),x≠y,
∴a= ∈(0, ),m,n∈N+ ,
∴2n<m+n,
∴n<m.
故選:A.
【考點(diǎn)精析】利用平均數(shù)、中位數(shù)、眾數(shù)對(duì)題目進(jìn)行判斷即可得到答案,需要熟知⑴平均數(shù)、眾數(shù)和中位數(shù)都是描述一組數(shù)據(jù)集中趨勢(shì)的量;⑵平均數(shù)、眾數(shù)和中位數(shù)都有單位;⑶平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個(gè)數(shù)都有關(guān)系,所以最為重要,應(yīng)用最廣;⑷中位數(shù)不受個(gè)別偏大或偏小數(shù)據(jù)的影響;⑸眾數(shù)與各組數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個(gè)別數(shù)據(jù)的影響,有時(shí)是我們最為關(guān)心的數(shù)據(jù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù)與,記集合;
(1)設(shè),,求.
(2)設(shè),,若,求實(shí)數(shù)a的取值范圍.
(3)設(shè).如果求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面ABCD,底部ABCD為菱形,E為CD的中點(diǎn).
(Ⅰ)求證:BD⊥平面PAC;
(Ⅱ)若∠ABC=60°,求證:平面PAB⊥平面PAE;
(Ⅲ)棱PB上是否存在點(diǎn)F,使得CF∥平面PAE?說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若二次函數(shù)滿(mǎn)足.且
(1)求的解析式;
(2)若在區(qū)間[-1,1]上不等式恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=+bx+c,
(1)若f(x)在(-∞,+∞)上是增函數(shù),求b的取值范圍;
(2)若f(x)在x=1處取得極值,且x∈[-1,2]時(shí),f(x)<c2恒成立,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)這6個(gè)點(diǎn)中隨機(jī)選取3個(gè)點(diǎn),將這3個(gè)點(diǎn)及原點(diǎn)O兩兩相連構(gòu)成一個(gè)“立體”,記該“立體”的體積為隨機(jī)變量V(如果選取的3個(gè)點(diǎn)與原點(diǎn)在同一個(gè)平面內(nèi),此時(shí)“立體”的體積V=0).
(1)求V=0的概率;
(2)求V的分布列及數(shù)學(xué)期望EV.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)2010年至2016年農(nóng)村居民家庭人均純收入y(單位:千元)的數(shù)據(jù)如下表:
年 份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代號(hào)t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均純收入y | 2.9 | 3.3 | 3.6 | 4.4 | 4.8 | 5.2 | 5.9 |
(1)求y關(guān)于t的回歸直線(xiàn)方程;
(2)利用(1)中的回歸方程,分析2010年至2016年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)該地區(qū)2018年農(nóng)村居民家庭人均純收入.
附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點(diǎn).
(1)證明:CD⊥平面PAE;
(2)若直線(xiàn)PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P﹣ABCD的體積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com