【題目】下列函數(shù)中,既是奇函數(shù),又在(0,1)上是增函數(shù)的是()
A. B. C. D.
【答案】D
【解析】
運用奇偶性和單調性的定義,判斷即可得到所求結論.
A,令y=f(x)=x(x﹣1),f(﹣x)=x(x+1),﹣f(x)=﹣x(x﹣1)=x(1﹣x),不滿足f(﹣x)=﹣f(x),不為奇函數(shù);
B,y=f(x)x,f(﹣x)x,﹣f(x)=x不滿足f(﹣x)=﹣f(x),不為奇函數(shù);
C,y=f(x)=x滿足f(﹣x)=﹣f(x),為奇函數(shù),
又x=時,y=3+=,x=時,y=2+=,即,但,所以不滿足在(0,1)上是增函數(shù);
D,y=f(x)=2x(x≠0)滿足f(﹣x)=﹣f(x),為奇函數(shù),且在(0,1)遞增,符合題意;故選:D.
科目:高中數(shù)學 來源: 題型:
【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;
(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(12分)已知函數(shù)f(x)=
(1)判斷函數(shù)在區(qū)間[1,+∞)上的單調性,并用定義證明你的結論.
(2)求該函數(shù)在區(qū)間[1,4]上的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù). 為實數(shù),且,記由所有組成的數(shù)集為.
(1)已知,求;
(2)對任意的,恒成立,求的取值范圍;
(3)若,,判斷數(shù)集中是否存在最大的項?若存在,求出最大項;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:
將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?
非體育迷 | 體育迷 | 合計 | |
男 | |||
女 | 10 | 55 | |
合計 |
(2)將上述調查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結果是相互獨立的,求X的分布列,期望E(X)和方差D(X)
P( K2≥k) | 0.05 | 0.01 |
k | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,假命題為( )
A.存在四邊相等的四邊形不是正方形
B.z1 , z2∈C,z1+z2為實數(shù)的充分必要條件是z1 , z2互為共軛復數(shù)
C.若x,y∈R,且x+y>2,則x,y至少有一個大于1
D.對于任意n∈N* , + +…+ 都是偶數(shù)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】樣本(x1 , x2…,xn)的平均數(shù)為x,樣本(y1 , y2 , …,ym)的平均數(shù)為 ( ≠ ).若樣本(x1 , x2…,xn , y1 , y2 , …,ym)的平均數(shù) =α +(1﹣α) ,其中0<α< ,則n,m的大小關系為( )
A.n<m
B.n>m
C.n=m
D.不能確定
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知三點O(0,0),A(﹣2,1),B(2,1),曲線C上任意一點M(x,y)滿足| + |= ( + )+2.
(1)求曲線C的方程;
(2)動點Q(x0 , y0)(﹣2<x0<2)在曲線C上,曲線C在點Q處的切線為直線l:是否存在定點P(0,t)(t<0),使得l與PA,PB都相交,交點分別為D,E,且△QAB與△PDE的面積之比是常數(shù)?若存在,求t的值.若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com