.已知為正數(shù),,其中是常數(shù),且的最小值是,滿足條件的點是橢圓一弦的中點,則此弦所在的直線方程為

    A.  B. C..  D.

 

【答案】

D

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知:正數(shù)數(shù)列{an}的通項公式an=
3n+2
3n-1
(n∈N*
(1)求數(shù)列{an}的最大項;
(2)設(shè)bn=
an+p
an-2
,確定實常數(shù)p,使得{bn}為等比數(shù)列;
(3)(理)數(shù)列{Cn},滿足C1>-1,C1
2
,Cn+1=
Cn+p
Cn+1
,其中p為第(2)小題中確定的正常數(shù),求證:對任意n∈N*,有C2n-1
2
且C2n
2
或C2n-1
2
且C2n
2
成立.
(文)設(shè){bn}是滿足第(2)小題的等比數(shù)列,求使不等式-b1+b2-b3+…+(-1)nbn≥2010成立的最小正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•上海模擬)已知向量
m
n
,其中
m
=(
1
x3+c-1
,-1)
,
n
=(-1,y)
(x,y,c∈R),把其中x,y所滿足的關(guān)系式記為y=f(x),若函數(shù)f(x)為奇函數(shù).
(Ⅰ) 求函數(shù)f(x)的表達式;
(Ⅱ) 已知數(shù)列{an}的各項都是正數(shù),Sn為數(shù)列{an}的前n項和,且對于任意n∈N*,都有“{f(an)}的前n項和等于Sn2,”求數(shù)列{an}的通項式;
(Ⅲ) 若數(shù)列{bn}滿足bn=4n-a•2an+1(a∈R),求數(shù)列{bn}的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知個正數(shù)排成一個n行n列的數(shù)陣:

    第1列      第2列    第3列   …     第n列

第1行                                …     

第2行                 … 

第3行      … 

第n行          … 

其中表示該數(shù)陣中位于第i行第k列的數(shù),已知該數(shù)陣中各行的數(shù)依次成等比數(shù)列,各列的數(shù)依次成公比為2的等比數(shù)列,已知a2,3=8,a3,4=20.

   (1)求

   (2)設(shè)能被3整除.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

.已知為正數(shù),,其中是常數(shù),且的最小值是,滿足條件的點是橢圓一弦的中點,則此弦所在的直線方程為(     )

    A.  B. C..  D.

查看答案和解析>>

同步練習冊答案