4.已知P是圓C:(x-2)2+(y-1)2=5上的一動(dòng)點(diǎn),Q是直線l:x+2y+6=0上一動(dòng)點(diǎn),則|PQ|的最小值是( 。
A.$\sqrt{6}$B.$\sqrt{5}$C.2$\sqrt{5}$D.2$\sqrt{6}$

分析 由題意畫(huà)出圖形,由點(diǎn)到直線的距離公式求出圓心到直線的距離,減去圓的半徑得答案.

解答 解:如圖,圓C:(x-2)2+(y-1)2=5的圓心坐標(biāo)C(2,1),半徑r=$\sqrt{5}$.

圓心C(2,1)到直線l:x+2y+6=0的距離d=$\frac{|1×2+2×1+6|}{\sqrt{5}}=2\sqrt{5}$.
∴|PQ|的最小值是$2\sqrt{5}-\sqrt{5}=\sqrt{5}$.
故選:B.

點(diǎn)評(píng) 本題考查直線與圓的位置關(guān)系,考查了點(diǎn)到直線距離公式的應(yīng)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知集合A={x|1<x<10,x∈N}.B={x|x=$\sqrt{n}$,n∈A}.則A∩B=(  )
A.{1,2,3}B.{x|1<x<3}C.{2,3}D.{x|1<x<$\sqrt{10}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知函數(shù)$f(x)=\frac{lnx}{1+x}-lnx$在x=x0處取得最大值,給出下列5個(gè)式子:
①f(x0)<x0,②f(x0)=x0,③f(x0)>x0,④$f({x_0})<\frac{1}{2}$,⑤$f({x_0})>\frac{1}{2}$.則其中正確式子的序號(hào)為( 。
A.①和④B.②和④C.②和⑤D.③和⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知正三棱錐的體積為9$\sqrt{3}$cm3,高為3cm.則它的全面積為27$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在等邊△ABC中,點(diǎn)D,E分別在邊AC,AB上,且AD:DC=1:2,AE:AB=2:3,BD與CE相交于點(diǎn)F.
(Ⅰ)證明:A,B,C,D四點(diǎn)共圓;
(Ⅱ)若BC=2,求△AEF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=ex-1+2x-log${\;}_{\sqrt{2}}$ax(a>0)在區(qū)間(0,2)內(nèi)有兩個(gè)零點(diǎn),則a的取值范圍為( 。
A.($\sqrt{2}$,${2}^{\frac{e}{2}}$)B.(0,2]C.(2,2${\;}^{\frac{e+2}{2}}$]D.(2${\;}^{\frac{3}{2}}$,2${\;}^{\frac{e+4}{4}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)函數(shù)f(x)=|2x-1|-|x+1|.
(1)求不等式f(x)≤0的解集;
(2)若f(x)>a-2|x+1|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.復(fù)數(shù)z滿足 z-1=(z+1)i,則z的值是(  )
A.1+iB.1-iC.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.下列命題中正確命題的個(gè)數(shù)是( 。
(1)對(duì)分類(lèi)變量X與Y的隨機(jī)變量K2的觀測(cè)值k來(lái)說(shuō),k越小,判斷“X與Y有關(guān)系”的把握越大;
(2)若將一組樣本數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,則樣本的方差不變;
(3)若a>0,b>0且$\frac{2}{a}$+$\frac{1}$=1,則a+b≥4;
(4)設(shè)隨機(jī)變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=$\frac{1}{2}$-p.
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案