【題目】如圖,為測(cè)得河對(duì)岸塔AB的高,先在河岸上選一點(diǎn)C,使C在塔底B的正東方向上,測(cè)得點(diǎn)A的仰角為60°,再由點(diǎn)C沿北偏東15°方向走10 m到位置D,測(cè)得∠BDC=45°,則塔AB的高是( )
A. 10m B. 10m C. 10m D. 10m
【答案】D
【解析】試題分析:先在△ABC中求出BC,再△BCD中利用正弦定理,即可求得結(jié)論.
解:設(shè)塔高AB為x米,根據(jù)題意可知在△ABC中,∠ABC=90°,∠ACB=60°,AB=x,從而有BC=x,AC=x
在△BCD中,CD=10,∠BCD=60°+30°+15°=105°,∠BDC=45°,∠CBD=30°
由正弦定理可得,=
∴BC==10
∴x=10
∴x=
故塔高AB=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin2x的圖象向右平移φ(0<φ< )個(gè)單位后得到函數(shù)g(x)的圖象,若對(duì)滿(mǎn)足|f(x1)﹣g(x2)|=2的x1、x2有|x1﹣x2|min= ,則φ= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn=﹣3n2+49n.
(1)請(qǐng)問(wèn)數(shù)列{an}是否為等差數(shù)列?如果是,請(qǐng)證明;
(2)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(3,﹣4), =(6,﹣3), =(5﹣m,﹣(3+m)).
(1)若點(diǎn)A,B,C能構(gòu)成三角形,求實(shí)數(shù)m應(yīng)滿(mǎn)足的條件;
(2)若△ABC為直角三角形,且∠A為直角,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A,ω>0,﹣π<φ<π)在一個(gè)周期內(nèi)的圖象如圖所示.
(1)求f(x)的表達(dá)式;
(2)在△ABC中,f(C+ )=﹣1且 <0,求角C.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了參加第二屆全國(guó)數(shù)學(xué)建模競(jìng)賽,長(zhǎng)郡中學(xué)在高二年級(jí)舉辦了一次選拔賽,共有60名高二學(xué)生報(bào)名參加,按照不同班級(jí)統(tǒng)計(jì)參賽人數(shù),如表所示:
班級(jí) | 宏志班 | 珍珠班 | 英才班 | 精英班 |
參賽人數(shù) | 20 | 15 | 15 | 10 |
(Ⅰ)從這60名高二學(xué)生中隨機(jī)選出2人,求這2人在同一班級(jí)的概率;
(Ⅱ)現(xiàn)從這60名高二學(xué)生中隨機(jī)選出2人作為代表,進(jìn)行大賽前的發(fā)言,設(shè)選出的2人中宏志班的學(xué)生人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)f(x)在定義域上存在區(qū)間[a,b](ab>0),使f(x)在[a,b]上值域?yàn)閇 ],則稱(chēng)f(x)在[a,b]上具有“反襯性”.下列函數(shù)①f(x)=﹣x+ ②f(x)=﹣x2+4x ③f(x)=sin x ④f(x)= ,具有“反襯性”的為|( )
A.②③
B.①③
C.①④
D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在坐標(biāo)原點(diǎn),且與直線(xiàn)相切.
(1)求直線(xiàn)被圓所截得的弦的長(zhǎng);
(2)過(guò)點(diǎn)作兩條與圓相切的直線(xiàn),切點(diǎn)分別為求直線(xiàn)的方程;
(3)若與直線(xiàn)垂直的直線(xiàn)與圓交于不同的兩點(diǎn),若為鈍角,求直線(xiàn) 在軸上的截距的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com