【題目】已知函數(shù)
(1)討論f(x)的單調(diào)性;
(2)若f(x)有兩個(gè)零點(diǎn),求a的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)先求導(dǎo)數(shù),再討論導(dǎo)函數(shù)零點(diǎn),最后根據(jù)區(qū)間導(dǎo)函數(shù)符號(hào)確定單調(diào)性,
(2)結(jié)合函數(shù)單調(diào)性以及零點(diǎn)存在定理分類討論零點(diǎn)個(gè)數(shù),即得結(jié)果
解(1)
(。時(shí),當(dāng)時(shí),;當(dāng)時(shí),,
所以f(x)在單調(diào)遞減,在單調(diào)遞增;
(ⅱ)時(shí)
若,則,所以f(x)在單調(diào)遞增;
若,則,故當(dāng)時(shí),, ,;所以f(x)在單調(diào)遞增,在單調(diào)遞減;
若,則,故當(dāng),, ,;所以f(x)在單調(diào)遞增,在單調(diào)遞減;
綜上:時(shí),f(x)在單調(diào)遞減,在單調(diào)遞增;
時(shí),f(x)在單調(diào)遞增;
時(shí),f(x)在單調(diào)遞增,在單調(diào)遞減;
時(shí),f(x)在單調(diào)遞增,在單調(diào)遞減;
(2)(ⅰ)當(dāng)a>0,則由(1)知f(x)在單調(diào)遞減,在單調(diào)遞增,
又,,取b滿足,且,
則,所以f(x)有兩個(gè)零點(diǎn)
(ⅱ)當(dāng)a=0,則,所以f(x)只有一個(gè)零點(diǎn)
(ⅲ)當(dāng)a<0,若,則由(1)知,f(x)在單調(diào)遞增.又當(dāng)時(shí),,故f(x)不存在兩個(gè)零點(diǎn)
,則由(1)知,f(x)在單調(diào)遞減,在單調(diào)遞增,又當(dāng),f(x)<0,故f(x)不存在兩個(gè)零點(diǎn)
綜上,a的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正四棱錐中,,,分別為,的中點(diǎn).
(1)求正四棱錐的全面積;
(2)若平面與棱交于點(diǎn),求平面與平面所成銳二面角的大。ㄓ梅慈呛瘮(shù)值表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面四邊形中,,,,,將三角形沿翻折到三角形的位置,平面平面,為中點(diǎn).
(Ⅰ)求證:;
(Ⅱ)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如題所示:扇形ABC是一塊半徑為2千米,圓心角為60°的風(fēng)景區(qū),P點(diǎn)在弧BC上,現(xiàn)欲在風(fēng)景區(qū)中規(guī)劃三條三條商業(yè)街道PQ、QR、RP,要求街道PQ與AB垂直,街道PR與AC垂直,直線PQ表示第三條街道。
(1)如果P位于弧BC的中點(diǎn),求三條街道的總長(zhǎng)度;
(2)由于環(huán)境的原因,三條街道PQ、PR、QR每年能產(chǎn)生的經(jīng)濟(jì)效益分別為每千米300萬(wàn)元、200萬(wàn)元及400萬(wàn)元,問(wèn):這三條街道每年能產(chǎn)生的經(jīng)濟(jì)總效益最高為多少?(精確到1萬(wàn)元)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是正方形,平面,,點(diǎn)是線段上任意一點(diǎn).
(1)求證:;
(2)試確定點(diǎn)的位置,使與平面所成角的大小為30°.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的焦點(diǎn)坐標(biāo)分別為,,為橢圓上一點(diǎn),滿足且
(1) 求橢圓的標(biāo)準(zhǔn)方程:
(2) 設(shè)直線與橢圓交于兩點(diǎn),點(diǎn),若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓,傾斜角為60°的直線與橢圓分別交于A、B兩點(diǎn)且,點(diǎn)C是橢圓上不同于A、B一點(diǎn),則△ABC面積的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,側(cè)棱底面,,,,,點(diǎn)在棱上,且.
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com