【題目】已知命題:①函數(shù)的值域是;

②為了得到函數(shù)的圖象,只需把函數(shù)圖象上的所有點(diǎn)向右平移個(gè)單位長度;

③當(dāng)時(shí),冪函數(shù)的圖象都是一條直線;

④已知函數(shù),若互不相等,且,則的取值范圍是.

其中正確的命題個(gè)數(shù)為( )

A. 4 B. 3 C. 2 D. 1

【答案】C

【解析】

①根據(jù)指數(shù)函數(shù)的單調(diào)性進(jìn)行判斷;

②根據(jù)三角函數(shù)的圖形關(guān)系進(jìn)行判斷;

③根據(jù)冪函數(shù)的定義和性質(zhì)進(jìn)行判斷;

④根據(jù)函數(shù)與方程的關(guān)系,利用數(shù)形結(jié)合進(jìn)行判斷.

①因?yàn)?/span>是增函數(shù),所以當(dāng)時(shí),函數(shù)的值域是,故①正確;

②函數(shù)圖象上的所有點(diǎn)向右平移個(gè)單位長度,得到函數(shù)的圖像,故②錯(cuò)誤;

③當(dāng)時(shí),直線挖去一個(gè)點(diǎn),當(dāng)時(shí),冪函數(shù)的圖形是一條直線,故③錯(cuò)誤;

④作出的圖像如圖所示:

所以上遞減,在上遞增,在上遞減,

又因?yàn)?/span>上有兩個(gè),在上有一個(gè),

不妨設(shè),

,,的范圍即為的范圍,

,

則有,的范圍是,所以④正確;

所以正確的命題有2個(gè),故選C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的高二(1)班男同學(xué)有45名,女同學(xué)有15名,老師按照分層抽樣的方法組建了一個(gè)4人的課外興趣小組.

(1)求課外興趣小組中男、女同學(xué)的人數(shù);

(2)經(jīng)過一個(gè)月的學(xué)習(xí)、討論,這個(gè)興趣小組決定選出兩名同學(xué)做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名同學(xué)做實(shí)驗(yàn),該同學(xué)做完后,再從小組內(nèi)剩下的同學(xué)中選一名同學(xué)做實(shí)驗(yàn),求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;

(3)試驗(yàn)結(jié)束后,第一次做試驗(yàn)的同學(xué)得到的試驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二次做試驗(yàn)的同學(xué)得到的試驗(yàn)數(shù)據(jù)為69,70,70,72,74 ,請問哪位同學(xué)的實(shí)驗(yàn)更穩(wěn)定?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(1)求C;
(2)若c= ,△ABC的面積為 ,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù),),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn)是曲線上一點(diǎn),若點(diǎn)到曲線的最小距離為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期為π,且其圖象向左平移 個(gè)單位后得到函數(shù)g(x)=cosωx的圖象,則函數(shù)f(x)的圖象(
A.關(guān)于直線x= 對稱
B.關(guān)于直線x= 對稱
C.關(guān)于點(diǎn)( ,0)對稱
D.關(guān)于點(diǎn)( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在幾何體中,均與底面垂直,且為直角梯形,,,,,分別為線段,的中點(diǎn),為線段上任意一點(diǎn).

(1)證明:平面.

(2)若,證明:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市交通部門為了對該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了100人就該城市共享單車的推行情況進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照,,分成5組,制成如圖所示頻率分直方圖.

(1)求圖中x的值;

(2)求這組數(shù)據(jù)的平均數(shù)和中位數(shù);

(3)已知滿意度評分值在內(nèi)的男生數(shù)與女生數(shù)的比為,若在滿意度評分值為的人中隨機(jī)抽取2人進(jìn)行座談,求2人均為男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題a2x2+ax﹣2=0在[﹣1,1]上有解;命題q:只有一個(gè)實(shí)數(shù)x滿足不等式x2+2ax+2a≤0,若命題“p”或“q”是假命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案