12.非常數(shù)數(shù)列{an}是等差數(shù)列,且{an}的第5、10、20項成等比數(shù)列,則此等比數(shù)列的公比為( 。
A.$\frac{1}{5}$B.5C.2D.$\frac{1}{2}$

分析 利用等差數(shù)列的通項公式,用a1和d分別表示出等差數(shù)列的第5、10、20項,利用等比中項的性質(zhì)建立等式求得a1和d的關系,再由q=$\frac{{a}_{10}}{{a}_{5}}$化簡求值.

解答 解:設數(shù)列{an}是公差為d,且d≠0,
因為a5,a10,a20三項成等比數(shù)列,
所以(a1+9d)2=(a1+4d)(a1+19d),
整理得5a1d=5d2,解得d=a1,
則公比q=$\frac{{a}_{10}}{{a}_{5}}$=$\frac{{a}_{1}+9d}{{a}_{1}+4d}$=2,
故選:C

點評 本題主要考查了等比數(shù)列的性質(zhì)和等差數(shù)列的通項公式,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

2.為求使不等式1+2+3+…+n<60成立的最大正整數(shù)n,設計了如圖所示的算法,則圖中“-----”處應填入i-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若隨機安排甲、乙、丙三人在3天節(jié)日中值班,每人值班1天,則甲與丙恰有一個在第一天值班的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)$f(x)=cos(\frac{2π}{3}x)+(a-1)sin(\frac{π}{3}x)+a,g(x)={2^x}-{x^2}$,若f[g(x)]≤0對x∈[0,1]恒成立,則實數(shù)a的取值范圍是( 。
A.$(-∞,\sqrt{3}-1]$B.(-∞,0]C.[0,$\sqrt{3}$-1]D.$(-∞,1-\sqrt{3}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知f(x)=-x+sinx,命題p:?x∈(0,$\frac{π}{2}$),f(x)<0,則(  )
A.p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0B.p是假命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0
C.p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0D.p是真命題,¬p:?x∈(0,$\frac{π}{2}$),f(x)≥0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù) f(x)=kx($\frac{1}{e}$≤x≤e2),與函數(shù)$g(x)={(\frac{1}{e})^{\frac{x}{2}}}$,若f(x)與g(x)的圖象上分別存在點M,N,使得MN關于直線y=x對稱,則實數(shù)k的取值范圍是( 。
A.[-$\frac{1}{e}$,e]B.[-$\frac{2}{e}$,2e]C.(-$\frac{2}{e}$,2e)D.[-$\frac{3}{e}$,3e]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=$\left\{\begin{array}{l}2x-{x^2}(0≤x≤3)\\{x^2}+6x(-2≤x<0)\end{array}\right.$的值域是[-8,1].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.給出下列兩個命題:
命題p::若在邊長為1的正方形ABCD內(nèi)任取一點M,則|MA|≤1的概率為$\frac{π}{4}$.
命題q:若從一只只有3枚一元硬幣和2枚五角硬幣的儲錢罐內(nèi)隨機取出2枚硬幣(假設每枚硬幣被抽到都是等可能的),則總共取到2圓錢的概率為$\frac{1}{3}$.那么,下列命題中為真命題的是(  )
A.p∧qB.?pC.p∧(?q)D.(?p)∧(?q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=-\frac{4}{3}{x^3}+4{x^2}+12x+a$.
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若a=-1,求f(x)在區(qū)間[-2,3]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案