9.若復數(shù)z滿足(1+3i)z=i-3,則z等于(  )
A.iB.$\frac{4-3i}{5}$C.-iD.$\frac{5}{2}i$

分析 由(1+3i)z=i-3,得$z=\frac{i-3}{1+3i}$,然后利用復數(shù)代數(shù)形式的乘除運算化簡得答案.

解答 解:由(1+3i)z=i-3,
得$z=\frac{i-3}{1+3i}$=$\frac{(i-3)(1-3i)}{(1+3i)(1-3i)}=\frac{10i}{10}=i$,
故選:A.

點評 本題考查了復數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

19.雙曲線與橢圓有共同的焦點F1(-5,0),F(xiàn)2(5,0),點P(4,3)是雙曲線的漸近線與橢圓的一個交點,求雙曲線與橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在△ABC中,BC=x,AC=2,B=$\frac{π}{4}$,若滿足該條件的△ABC有兩解,則x的取值范圍是(  )
A.(2,+∞)B.(0,2)C.?$(2,2\sqrt{2})$D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.如圖,在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,點M,N分別在邊AB和AC上(M點和B點不重合),將△AMN沿MN翻折,△AMN變?yōu)椤鰽'MN,使頂點A'落在邊BC上(A'點和B點不重合).設(shè)∠ANM=θ
(1)用θ表示線段AM的長度,并寫出θ的取值范圍;
(2)求線段A'N長度的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在封閉的直三棱柱ABC-A1B1C1內(nèi)有一個體積為V的球,若AB⊥BC,AB=6,BC=8,AA1=5,則V的最大值是( 。
A.B.$\frac{9π}{2}$C.$\frac{125π}{6}$D.$\frac{32π}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知拋物線y2=2px(p>0),過點K(-4,0)作拋物線的兩條切線KA,KB,A,B為切點,若AB過拋物線的焦點,△KAB的面積為24,則p的值是( 。
A.12B.-12C.8D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)f(x+1)的圖象關(guān)于x=-1對稱,當x≥0時,f(x)=3-x,f(2)-f(2x-1)<0的解為(-$\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若$\overrightarrow{a}$,$\overrightarrow$均為單位向量,且$\overrightarrow{a}$與$\overrightarrow$的夾角為120°,則$\overrightarrow{a}$-$\overrightarrow$與$\overrightarrow$的夾角等于150°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知集合M={(x,y)|y=$\sqrt{25-{x}^{2}}$,y≠0},N={(x,y)|y=-x+b},若M∩N≠∅,則實數(shù)b的取值范圍是(  )
A.(-5,5$\sqrt{2}$]B.[-5$\sqrt{2}$,5$\sqrt{2}$]C.[-5,5]D.[-5$\sqrt{2}$,5)

查看答案和解析>>

同步練習冊答案