分析 (1)設(shè)MA=MA'=x,則MB=1-x,在Rt△MBA'中,利用三角函數(shù)可求;
(2)求線段A'N長度的最小值,即求線段AN長度的最小值,利用三角恒等變換化簡,從而求最值.
解答 (本小題滿分12分)
解:(1)∵在直角三角形ABC中,∠B=90°,$AB=\frac{1}{2}AC=1$,
∴∠C=30°,∠BAC=60°,∠AMN=120°-θ,…(2分)
設(shè)MA=MA′=x,則MB=1-x.在Rt△MBA′中,cos∠BMA′=$\frac{1-x}{x}$,
即cos[180°-2(120°-θ)]=cos(2θ-60°)=$\frac{1-x}{x}$,
∴MA=x=$\frac{1}{1+cos(2θ-60°)}$=$\frac{1}{2co{s}^{2}(θ-30°)}$,…(5分)
∵點(diǎn)M在線段AB上,M點(diǎn)和B點(diǎn)不重合,A′點(diǎn)和B點(diǎn)不重合,
∴45°<120°-θ<90°,
∴30°<θ<75°. …(6分)
(2)由(1)知,在△AMN中,∠ANM=θ,∠AMN=120°-θ,
由正弦定理有$\frac{AN}{sin(120°-θ)}=\frac{AM}{sinθ}$,
∴A′N=AN=$\frac{AMsin(120°-θ)}{sinθ}$=$\frac{sin(120°-θ)}{2co{s}^{2}(θ-30°)sinθ}$ …(8分)
=$\frac{sin[90°+(30°-θ)]}{2co{s}^{2}(θ-30°)sinθ}$=$\frac{cos(30°-θ)}{2co{s}^{2}(θ-30°)sinθ}$=$\frac{1}{2cos(θ-30°)sinθ}$
=$\frac{1}{2sinθ(cosθcos30°+sinθsin30°)}$=$\frac{1}{\sqrt{3}sinθcosθ+si{n}^{2}θ}$
=$\frac{1}{\frac{1}{2}+\frac{\sqrt{3}}{2}sin2θ-\frac{1}{2}cos2θ}$=$\frac{1}{\frac{1}{2}+sin(2θ-30°)}$,…(10分)
∵30°<θ<75°,
∴30°<2θ-30°<120°,當(dāng)且僅當(dāng)2θ-30°=90°,
即θ=60°時(shí),A′N有最小值$\frac{2}{3}$. …(12分)
點(diǎn)評(píng) 本題主要考查在實(shí)際問題中建立三角函數(shù)模型,從而利用三角函數(shù)中研究最值的方法解決最值問題,應(yīng)注意角的范圍的確定是關(guān)鍵,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\frac{\sqrt{10}}{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-1,-\frac{7}{8})$ | B. | (0,+∞) | C. | (-∞,0) | D. | $(1,\frac{6}{5})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 16 | C. | $4(1+\sqrt{3})$ | D. | $4(1+\sqrt{2})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i | B. | $\frac{4-3i}{5}$ | C. | -i | D. | $\frac{5}{2}i$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3 | B. | 0 | C. | -1 | D. | 1 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com