已知
a
=(3,3),|
b
|=6,
a
⊥(
a
-
b
),則向量
a
b
的夾角大小為
 
考點:數(shù)量積表示兩個向量的夾角
專題:平面向量及應用
分析:設(shè)向量
a
b
的夾角為α,由題意可得|
a
|,由垂直關(guān)系可得
a
•(
a
-
b
)=0,代入數(shù)據(jù)可求cosα,可得結(jié)論.
解答: 解:設(shè)向量
a
b
的夾角為α,α∈[0,π]
a
=(3,3),∴|
a
|=3
2
,
又∵
a
⊥(
a
-
b
),∴
a
•(
a
-
b
)=0,
a
2
-
a
b
=18-3
2
×6×cosα=0,
解得cosα=
2
2
,α=
π
4

故答案為:
π
4
點評:本題考查平面向量的夾角和數(shù)量積的關(guān)系,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若m>1,在約束條件
x-y≤0
mx-y≥0
x+y-1≤0
下,目標函數(shù)z=x+my的最大值小于2,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形的圓心角為240°,半徑為6,則扇形的面積是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對于實數(shù)a,b,定義運算“*”:a*b=
a2-ab,a>b
b2-ab,a≤b
.設(shè)函數(shù)f(x)=(2x-1)*(x-1),且f(x)的圖象與函數(shù)y=2x+m(m∈R)恰有三個交點,則m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,最小值是4的函數(shù)的序號是
 

①y=x+
4
x

②y=sinx+
4
sinx

③y=2ex+2e-x
④y=logx3+4log3x(0<x<1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由曲線y=
x
,y=x2所圍成圖形的面積是( 。
A、
1
3
B、
2
3
C、
1
6
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
i
1-i
的共軛復數(shù)是( 。
A、-
1
2
+
i
2
B、-
1
2
-
i
2
C、-
1
2
+
3
2
i
D、
1
2
+
i
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在復平面內(nèi)與復數(shù)z=
2i
1+i
所對應的點關(guān)于虛軸對稱的點為A,則A對應的復數(shù)為( 。
A、1+iB、1-i
C、-1-iD、-1+i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

AC
可以寫成①
AO
+
OC
;②
AO
-
OC
;③
OA
-
OC
;④
OC
-
OA
.其中正確的是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

同步練習冊答案