正方體ABCD—A1B1C1D1中,E、F分別是BB1、DD1的中點,則AA1與平面AEF所成角的余弦值為              (   )
A.B.C.D.
D

專題:計算題.
解答:解:設(shè)正方形邊長為a,則SAEF=×EF×=
SAA1F=×a× a=a2,
令點A1到面AEF的距離為h,
因為點E到面AA1F的距離d=a,則
四棱錐A-BEF的體積V=SAEFh=SAA1Fd
所以h=,所以AA1與平面AEF所成角的正弦值為
所以AA1與平面AEF所成角的余弦值為
點評:本題考查的知識點是直線與平面所成的角,異面直線及其所成的角,也可以建立適當(dāng)?shù)目臻g坐標(biāo)系,將空間直線與平面的夾角問題轉(zhuǎn)化為向量的夾角問題是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

..(本小題滿分12分)如圖,在正方體中,
、分別為棱的中點.
(1)求證:∥平面
(2)求證:平面⊥平面;
(3)如果,一個動點從點出發(fā)在正方體的
表面上依次經(jīng)過棱、、上的點,最終又回到點,指出整個路線長度的最小值并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m、n是兩條不同的直線,是三個不同的平面,下列四個命題中正確的序號是(  )
//,則         ②
            ④
A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)如圖,四棱錐P中,底面是正方形,
是正方形的中心,底面,的中點.
求證:(1)∥平面
(2)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖4,四棱錐P—ABCD中,底面ABCD是直角梯形,AB//CD,,AB=AD=2CD,側(cè)面底面ABCD,且為等腰直角三角形,,M為AP的中點。

(1)求證:
(2)求證:DM//平面PCB。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCDA1B1C1D1的側(cè)面AB1內(nèi)有一動點P到直線A1B1與直線BC的距離相等,則動點P所在曲線的形狀為(      )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在棱長為1的正方體ABCD-A1B1C1D1中,M 為BB1的中點,則點D到直線A1M的距離為            
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

空間四點中,其中三點共線是四點共面的                               (  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某種游戲中,黑、黃兩個“電子狗”從棱長為1的正方體ABCD-A1B1C1D1的頂點A出發(fā)沿棱向前爬行,每爬完一條棱稱為“爬完一段”.黑“電子狗”爬行的路線是AA1→A1D1→…,黃“電子狗”爬行的路線是AB→BB1→…,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(其中i是正整數(shù)).設(shè)黑“電子狗”爬完2006段、黃“電子狗”爬完2005段后各自停止在正方體的某個頂點處,這時黑、黃“電子狗”間的距離是     

查看答案和解析>>

同步練習(xí)冊答案