5.已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上有最大值4和最小值1,記f(x)=$\frac{g(x)}{x}$.
(1)求a、b的值;
(2)若不等式f(2x)-k•2x≥0在x∈[-1,1]上恒成立,求實(shí)數(shù)k的取值范圍.

分析 (1)根據(jù)一元二次函數(shù)的性質(zhì)建立不等式關(guān)系進(jìn)行求解即可.
(2)判斷函數(shù)g(x)的單調(diào)性,利用參數(shù)分離法進(jìn)行求解即可.

解答 解:(1)g(x)=ax2-2ax+1+b的對(duì)稱軸為x=1,
∵a>0,∴函數(shù)在[2,3]上為增函數(shù),
∵g(x)在區(qū)間[2,3]上有最大值4和最小值1,
∴$\left\{\begin{array}{l}{g(2)=1}\\{g(3)=4}\end{array}\right.$,即$\left\{\begin{array}{l}{1+b=1}\\{3a+b+1=4}\end{array}\right.$,得$\left\{\begin{array}{l}{a=1}\\{b=0}\end{array}\right.$.
(2)∵a=1.b=0,∴g(x)=x2-2x+1,
則f(x)=$\frac{g(x)}{x}$=x+$\frac{1}{x}$-2,
不等式f(2x)-k•2x≥0可化為:2x+$\frac{1}{{2}^{x}}$-2-k•2x≥0,
即k≤1+$(\frac{1}{{2}^{x}})^{2}$-2•${(\frac{1}{{2}^{x}})}^{\;}$,
令t=$\frac{1}{{2}^{x}}$,
∵x∈[-1,1],
∴t∈[$\frac{1}{2}$,2],
令h(t)=t2-2t+1=(t-1)2,t∈[$\frac{1}{2}$,2],
∴當(dāng)t=1時(shí),函數(shù)取得最小值h(1)=0,
∴k≤0.
故所以k的取值范圍是k≤0.

點(diǎn)評(píng) 本題考查了恒成立問(wèn)題,考查了二次函數(shù)的性質(zhì),訓(xùn)練了利用二次函數(shù)的單調(diào)性求最值,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,解答此題的關(guān)鍵在于把不等式在閉區(qū)間上有解轉(zhuǎn)化為分離變量后的參數(shù)k小于等于函數(shù)在閉區(qū)間上的最大值,是學(xué)生難以想到的地方,是難題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)cosα=$\frac{1}{3}$,且-$\frac{π}{2}$<α<0,求$\frac{tan(-α-π)sin(π+α)sin(\frac{π}{2}+α)}{cos(-α)cos(α-\frac{π}{2})}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知sin(π-α)=$\frac{4}{5}$,α∈(0,$\frac{π}{2}$),cos($\frac{π}{2}$+β)=-$\frac{3}{5}$,β∈(0,$\frac{π}{2}$),求:
(1)α+β的值;
(2)sin2α+cos2β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.設(shè){an}是公比為q的等比數(shù)列,其前n項(xiàng)積為Tn,并滿足條件a1>1,a99a100-1>0,$\frac{{{a_{99}}-1}}{{{a_{100}}-1}}<0$,給出下列結(jié)論:
①0<q<1②a99a101<1③T198<1④使Tn<1成立的最小自然數(shù)n等于199.
其中正確的編號(hào)為①②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)$g(x)=2sin(2ωx+\frac{π}{6})$(其中0<ω<1),若點(diǎn)$(-\frac{π}{6},0)$是函數(shù)g(x)圖象的一個(gè)對(duì)稱中心,
(1)試求ω的值;
(2)若f(x)=g(x)+1,請(qǐng)先列表再作出函數(shù)f(x)在區(qū)間x∈[-π,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對(duì)邊,且asinB=-bsin(A+$\frac{π}{3}$).
(1)求A;
(2)若△ABC的面積S=$\frac{\sqrt{3}}{4}$c2,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.函數(shù)y=|x-a|的圖象關(guān)于直線x=2對(duì)稱,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知關(guān)于x的不等式 x2-(a2+3a+2)x+3a(a2+2)<0(a∈R).
(Ⅰ)解該不等式;
(Ⅱ)定義區(qū)間(m,n)的長(zhǎng)度為d=n-m,若a∈[0,4],求該不等式解集表示的區(qū)間長(zhǎng)度的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知集合A={1,2,3,4},B={x∈Z||x|≤1},則A∩(∁ZB)=( 。
A.B.{4}C.{3,4}D.{2,3,4}

查看答案和解析>>

同步練習(xí)冊(cè)答案