11.設(shè)直l1,l2分別是函數(shù)f(x)=$\left\{\begin{array}{l}{-lnx,0<x<1}\\{lnx,x>1}\end{array}\right.$圖象上點(diǎn)P1,P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1,l2分別與y軸相交于A,B,則△PAB的面積的取值范圍是( 。
A.(0,1)B.(1,+∞)C.(0,+∞)D.(0,2)

分析 設(shè)出點(diǎn)P1,P2的坐標(biāo),求出原分段函數(shù)的導(dǎo)函數(shù),得到直線l1與l2的斜率,由兩直線垂直求得P1,P2的橫坐標(biāo)的乘積為1,再分別寫出兩直線的點(diǎn)斜式方程,求得A,B兩點(diǎn)的縱坐標(biāo),得到|AB|,聯(lián)立兩直線方程求得P的橫坐標(biāo),然后代入三角形面積公式,利用基本不等式求得△PAB的面積的取值范圍.

解答 解:設(shè)P1(x1,y1),P2(x2,y2)(0<x1<1<x2),
當(dāng)0<x<1時(shí),f′(x)=-$\frac{1}{x}$,當(dāng)x>1時(shí),f′(x)=$\frac{1}{x}$,
∴l(xiāng)1的斜率${k}_{1}=-\frac{1}{{x}_{1}}$,l2的斜率${k}_{2}=\frac{1}{{x}_{2}}$,
∵l1與l2垂直,且x2>x1>0,
∴${k}_{1}•{k}_{2}=-\frac{1}{{x}_{1}}•\frac{1}{{x}_{2}}=-1$,即x1x2=1.
直線l1:y=-$\frac{1}{{x}_{1}}(x-{x}_{1})-ln{x}_{1}$,l2:y=$\frac{1}{{x}_{2}}(x-{x}_{2})+ln{x}_{2}$.
取x=0分別得到A(0,1-lnx1),B(0,-1+lnx2),
|AB|=|1-lnx1-(-1+lnx2)|=|2-(lnx1+lnx2)|=|2-lnx1x2|=2.
聯(lián)立兩直線方程可得交點(diǎn)P的橫坐標(biāo)為x=$\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$,
∴${S}_{△PAB}=\frac{1}{2}$|AB|•|xP|=$\frac{1}{2}$×2×$\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{2}{{x}_{1}+{x}_{2}}$=$\frac{2}{{x}_{1}+\frac{1}{{x}_{1}}}$.
∵函數(shù)y=x+$\frac{1}{x}$在(0,1)上為減函數(shù),且0<x1<1,
∴${x}_{1}+\frac{1}{{x}_{1}}$>1+1=2,則0<$\frac{1}{{x}_{1}+\frac{1}{{x}_{1}}}$<$\frac{1}{2}$,
∴0<$\frac{2}{{x}_{1}+\frac{1}{{x}_{1}}}$<1.
∴△PAB的面積的取值范圍是(0,1).
故選:A.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過曲線上某點(diǎn)處的切線方程,訓(xùn)練了利用基本不等式求函數(shù)的最值,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如圖,表中數(shù)據(jù)滿足:
(1)第1行為1;
(2)第n(n≥2)行首尾兩數(shù)均為n;
(3)從第3行起每行除首尾兩個(gè)數(shù)外每個(gè)數(shù)等于上一行它肩上的兩個(gè)數(shù)之和.
則第n行(n≥2)第2個(gè)數(shù)是$\frac{{n}^{2}}{2}-\frac{n}{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.先閱讀下面的文字:“求$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$的值時(shí),采用了如下的方式:令$\sqrt{2+\sqrt{2+\sqrt{2+…}}}$=x,則有x=$\sqrt{2+x}$,兩邊平方,可解得x=2(負(fù)值舍去)”.那么,可用類比的方法,求出2+$\frac{1}{2+\frac{1}{2+…}}$的值是1+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為$\frac{π}{3}$,|$\overrightarrow{OA}$|=2,若點(diǎn)M在直線OB上,則|$\overrightarrow{OA}$$+\overrightarrow{OM}$|的最小值為(  )
A.$\sqrt{3}$B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖是2002年8月北京市第24屆國(guó)際數(shù)學(xué)大會(huì)會(huì)標(biāo),由4個(gè)全等的直角三角形拼合而成,若ABCD與EFGH均為正方形,且AB=α,∠ADE=30°,在正方形ABCD內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自正方形EFGH內(nèi)的概率為1-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.平面幾何中有如下結(jié)論:若在三角形ABC的內(nèi)切圓的半徑為r1,外接圓的半徑為r2,則$\frac{{r}_{1}}{{r}_{2}}$=$\frac{1}{2}$.推廣到空間,可以得到類似結(jié)論;若正四面體P-ABC(所有棱長(zhǎng)都相等的四面體叫正四面體)的內(nèi)切球半徑為R1,外接球半徑為R2,則$\frac{{R}_{1}}{{R}_{2}}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知扇形的半徑為6,圓心角為120°,則扇形的弧長(zhǎng)為4π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$a=\int_{-\frac{π}{4}}^{\frac{3π}{4}}{2cos(x-\frac{π}{4})}dx$,則${({x-\frac{a}{{\sqrt{x}}}})^8}$展開式中x5的系數(shù)為448.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.將甲、乙、丙、丁四名大學(xué)生分配到三個(gè)不同的學(xué)校實(shí)習(xí),每個(gè)學(xué)校至少分配一人,若甲、乙不能去同一個(gè)學(xué)校,則不同的分配方案共有( 。
A.36種B.30種C.24種D.20種

查看答案和解析>>

同步練習(xí)冊(cè)答案