【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點,且直線恰好通過橢圓的右焦點.
(1)求橢圓的標準方程;
(2)已知橢圓的左焦點為,左、右頂點分別為,經過點的直線與橢圓交于兩點,記與的面積分別為,求的最大值.
科目:高中數學 來源: 題型:
【題目】備受矚目的巴西世界杯正在如火如荼的進行,為確保總決賽的順利進行,組委會決定在位于里約熱內盧的馬拉卡納體育場外臨時圍建一個矩形觀眾候場區(qū),總面積為72m2(如圖所示).要求矩形場地的一面利用體育場的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對面留一個長度為2m的入口.現已知鐵欄桿的租用費用為100元/m.設該矩形區(qū)域的長為x(單位:m),租用鐵欄桿的總費用為y(單位:元)
(1)將y表示為x的函數;
(2)試確定x,使得租用此區(qū)域所用鐵欄桿所需費用最小,并求出最小最小費用.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知方程x2+y2-2(t+3)x+2(1-4t2)y+16t4+9=0(t∈R)的圖形是圓.
(1)求t的取值范圍;
(2)求圓的面積取最大值時t的值;
(3)若點P(3,4t2)恒在所給圓內,求t的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖C,D是以AB為直徑的圓上的兩點,,F是AB上的一點,且,將圓沿AB折起,使點C在平面ABD的射影E在BD上,已知
(1)求證:AD平面BCE
(2)求證:AD//平面CEF;
(3)求三棱錐A-CFD的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在棱長為2的正方體中, 分別為和的中點.
(1)求證: 平面;
(2)在棱上是否存在一點,使得二面角的大小為,若存在,求出的長;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,若f(x)=(x+ )ex在區(qū)間(0,1)上只有一個極值點,則a的取值范圍為( )
A.a>0
B.a≤1
C.a>1
D.a≤0
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com