【題目】已知函數(shù).
(1)判斷函數(shù)在點處的切線是否過定點?若過,求出該點的坐標;若不過,請說明理由.
(2)若有最大值,證明:.
【答案】(1)在處的切線過定點,坐標為;(2)證明見解析
【解析】
(1)利用導數(shù)的幾何意義,求出函數(shù)在點處的切線方程,根據(jù)過定點的直線系方程的判斷方法,即可判斷該切線是否過定點;
(2)先求出函數(shù)的導數(shù),判斷其單調(diào)性,求出其最大值為,將需證明的不等式等價變形為,令,構(gòu)造函數(shù)
,利用導數(shù)求出其最小值,,即得證.
(1),,切點坐標為,
在處的切線方程為,
即,令,得,.
在處的切線過定點.其坐標為.
(2)由題知,的定義域為.
.
若,則恒成立,在上單調(diào)遞增,無最大值.
若,令,得(舍)或
當,;當時,,
故在上單調(diào)遞增,在上單調(diào)遞減,
故,
即.
若證,可證,令,,
則有,即證.
設(shè),則.
當時,,單調(diào)遞減;當時,,單調(diào)遞增,故.,即.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率為,且點在橢圓上.
(1)求橢圓的標準方程;
(2)過點的直線與橢圓交于,兩點,在直線上存在點,使三角形為正三角形,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】天津市某中學為全面貫徹“五育并舉,立德樹人”的教育方針,促進學生各科平衡發(fā)展,提升學生綜合素養(yǎng).該校教務(wù)處要求各班針對薄弱學科生成立特色學科“興趣學習小組”(每位學生只能參加一個小組),以便課間學生進行相互幫扶.已知該校某班語文數(shù)學英語三個興趣小組學生人數(shù)分別為10人10人15人.經(jīng)過一段時間的學習,上學期期中考試中,他們的成績有了明顯進步.現(xiàn)采用分層抽樣的方法從該班的語文,數(shù)學,英語三個興趣小組中抽取7人,對期中考試這三科成績及格情況進行調(diào)查.
(1)應(yīng)從語文,數(shù)學,英語三個興趣小組中分別抽取多少人?
(2)若抽取的7人中恰好有5人三科成績?nèi)考案,其?/span>2人三科成績不全及格.現(xiàn)從這7人中隨機抽取4人做進一步的調(diào)查.
①記表示隨機抽取4人中,語文,數(shù)學,英語三科成績?nèi)案竦娜藬?shù),求隨機變量的分布列和數(shù)學期望;
②設(shè)為事件“抽取的4人中,有人成績不全及格”,求事件發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統(tǒng)計圖.則下列說法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線C:y2=2px的焦點為F,過點F且斜率為1的直線l截得圓:x2+y2=p2的弦長為2.
(1)求拋物線C的方程;
(2)若過點F作互相垂直的兩條直線l1、l2,l1與拋物線C交于A、B兩點,l2與拋物線C交于D、E兩點,M、N分別為弦AB、DE的中點,求|MF||NF|的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有一副斜邊長為10的直角三角板,將它們斜邊重合,若將其中一個三角板沿斜邊折起形成三棱錐,如圖所示,已知,,則三棱錐的外接球的表面積為______;該三棱錐體積的最大值為_______.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“柯西不等式”是由數(shù)學家柯西在研究數(shù)學分析中的“流數(shù)”問題時得到的,但從歷史的角度講,該不等式應(yīng)當稱為柯西﹣﹣布尼亞科夫斯基﹣﹣施瓦茨不等式,因為正是后兩位數(shù)學家彼此獨立地在積分學中推而廣之,才將這一不等式推廣到完善的地步,在高中數(shù)學選修教材4﹣5中給出了二維形式的柯西不等式:(a2+b2)(c2+d2)≥(ac+bd)2當且僅當ad=bc(即)時等號成立.該不等式在數(shù)學中證明不等式和求函數(shù)最值等方面都有廣泛的應(yīng)用.根據(jù)柯西不等式可知函數(shù)的最大值及取得最大值時x的值分別為( 。
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年第十三屆女排世界杯共12支參賽球隊,比賽賽制釆取單循環(huán)方式,即每支球隊進行11場比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取5局3勝制):比賽中以3—0或3—1取勝的球隊積3分,負隊積0分;而在比賽中以3—2取勝的球隊積2分,負隊積1分.9輪過后,積分榜上的前2名分別為中國隊和美國隊,中國隊積26分,美國隊積22分.第10輪中國隊對抗塞爾維亞隊,設(shè)每局比賽中國隊取勝的概率為.
(1)第10輪比賽中,記中國隊3—1取勝的概率為,求的最大值點.
(2)以(1)中的作為的值.
(i)在第10輪比賽中,中國隊所得積分為,求的分布列;
(ⅱ)已知第10輪美國隊積3分,判斷中國隊能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結(jié)果如何,中國隊積分最多)?若能,求出相應(yīng)的概率;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com