在直角坐標(biāo)系中,曲線C1的方程為
x=4t2
y=4t
(t為參數(shù)),若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C2:ρcosθ=1與C1的焦點(diǎn)之間的距離為
 
分析:先將曲線C1的化成直角坐標(biāo)方程,曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程,求出曲線C1的焦點(diǎn)坐標(biāo),然后利用點(diǎn)到直線的距離公式求出距離.
解答:解:曲線C1的方程為
x=4t2
y=4t
(t為參數(shù)),它的普通方程為:y2=4x;若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,
則曲線C2:ρcosθ=1,它的普通方程為:x=1,曲線C1的焦點(diǎn)坐標(biāo):(1,0),顯然x=1過(guò)(1,0),曲線C2:ρcosθ=1與C1的焦點(diǎn)之間的距離為:0.
故答案為:0.
點(diǎn)評(píng):本小題主要考查簡(jiǎn)單曲線的極坐標(biāo)方程、拋物線的參數(shù)方程、考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,曲線C1的參數(shù)方程為
x=cosθ
y=sinθ
θ∈[0,π],以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2在極坐標(biāo)系中的方程為ρ=
b
sinθ-cosθ
.若曲線C1與C2有兩個(gè)不同的交點(diǎn),則實(shí)數(shù)b的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(坐標(biāo)系與參數(shù)方程)在直角坐標(biāo)系中,曲線C1的方程為
x=4t2
y=4t
(t為參數(shù)),若以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,則曲線C2:ρcosθ=1與C1的交點(diǎn)之間的距離為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•天河區(qū)三模)(坐標(biāo)系與參數(shù)方程選做題)
在直角坐標(biāo)系中,曲線C1的參數(shù)方程為
x=3cosα
y=3sinα
(α為參數(shù));在極坐標(biāo)系(以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,曲線C2的方程為ρ cos(θ+
π
4
)=
2
,則C1與C2兩交點(diǎn)的距離為
2
7
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)系中,曲線C的參數(shù)方程為
x=4t2
y=4t
(t為參數(shù)),以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,在極坐標(biāo)系中曲線Γ的極坐標(biāo)方程為ρcosθ-ρsinθ=1,曲線Γ與C相交于兩點(diǎn)A、B,則弦長(zhǎng)|AB|等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案