7.(1)用輾轉(zhuǎn)相除法求117與182的最大公約數(shù),并用更相減損術(shù)檢驗.
(2)用秦九韶算法求多項式f(x)=1-9x+8x2-4x4+5x5+3x6在x=-1的值?

分析 (1)用較大的數(shù)字除以較小的數(shù)字,得到商和余數(shù),然后再用上一式中的除數(shù)和得到的余數(shù)中較大的除以較小的,以此類推,當整除時,就得到要求的最大公約數(shù).
(2)由秦九韶算法可得f(x)=1-9x+8x2-4x4+5x5+3x6=((((3x+5)x-4)x)x+8)x-9)x+1,即可得出f(-1).

解答 解:(1)∵182=1×117+65,
117=1×65+52,
65=1×52+13,
52=3×13,
∴117與182的最大公約數(shù)為13,
檢驗:182-117=65,
117-65=52,
65-52=13,
52-13=39,
39-13=26,
26-13=13,
經(jīng)檢驗:117與182的最大公約數(shù)為13.
(2)f(x)=1-9x+8x2-4x4+5x5+3x6=((((3x+5)x-4)x)x+8)x-9)x+1,
v0=3,v1=-3+5=2,v2=-2-4=-6,v3=6,v4=-6+8=2,
v5=-2-9=-11,v6=11+1=12.
∴f(-1)=12.

點評 本題考查用輾轉(zhuǎn)相除法求兩個數(shù)的最大公約數(shù),考查了秦九韶算法,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知F1,F(xiàn)2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點,以F1F2為直徑的圓與雙曲線右支的一個交點為P,PF1與雙曲線相交于點Q,且|PQ|=2|QF1|,則該雙曲線的離心率為 ( 。
A.$\sqrt{5}$B.2C.$\sqrt{3}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}為等差數(shù)列,數(shù)列{bn}為等比數(shù)列,a1=1,b1=8,a2+b2=18,a3+b3=35,數(shù)列{an}的前n項和為Sn
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=$\frac{{a}_{n+2}}{_{n}{S}_{n}}$,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知等比數(shù)列{an}的前n項和為Sn,若S3=7,S6=63,則數(shù)列{nan}的前n項和為( 。
A.-3+(n+1)×2nB.3+(n+1)×2nC.1+(n+1)×2nD.1+(n-1)×2n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項數(shù)列{an},$\frac{n}{{a}_{1}+2{a}_{2}+3{a}_{3}+…+n{a}_{n}}$=$\frac{2}{n+2}$(n∈N*),求數(shù)列{an}的通項an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.總體由編號為01,02,…,19,20的20個個體組成,利用下面的隨機數(shù)表選取6個個體,選取方法是從隨機數(shù)表第1行的第5列和第6列數(shù)字開始由左到右依次選取兩個數(shù)字,則選出來的第6個個體的編號為(  )
78166572080263140702436911280598
32049234493582003623486969387481
A.11B.02C.05D.04

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=$\frac{ax}{{x}^{2}+1}$+a,g(x)=aln x-x(a≠0).
(Ⅰ)求函數(shù)f (x)的單調(diào)區(qū)間;
(Ⅱ)證明:當a>0時,對于任意x1,x2∈(0,e],總有g(shù)(x1)<f (x2)成立,其中e=2.71828…是自然對數(shù)的底數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在實數(shù)集R上的不恒為零的偶函數(shù),且xf(x+1)=(x+1)f(x)對任意實數(shù)x恒成立,則$f[f(\frac{5}{2})]$的值是(  )
A.0B.$\frac{1}{2}$C.1D.$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知0≤φ<π,函數(shù)$f(x)=\frac{{\sqrt{3}}}{2}cos(2x+φ)+{sin^2}x$.
(Ⅰ)若$φ=\frac{π}{6}$,求f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若f(x)的最大值是$\frac{3}{2}$,求φ的值.

查看答案和解析>>

同步練習(xí)冊答案