分析 (Ⅰ)利用兩角和與差的三角函數(shù)化簡函數(shù)的解析式,通過正弦函數(shù)的單調性求解即可.
(Ⅱ)利用函數(shù)f(x)的最大值為$\frac{3}{2}$,通過求解方程求解即可.
解答 (本小題滿分14分)
(Ⅰ)由題意$f(x)=\frac{1}{4}cos2x-\frac{{\sqrt{3}}}{4}sin2x+\frac{1}{2}$…(3分)
=$\frac{1}{2}cos(2x+\frac{π}{3})+\frac{1}{2}$…(5分)
由$2kπ-π≤2x+\frac{π}{3}≤2kπ$,得$kπ-\frac{2π}{3}≤x≤kπ-\frac{π}{6}$.
所以單調f(x)的單調遞增區(qū)間為$[kπ-\frac{2π}{3},kπ-\frac{π}{6}]$,k∈Z.…(8分)
(Ⅱ)由題意$f(x)=(\frac{{\sqrt{3}}}{2}cosφ-\frac{1}{2})cos2x-\frac{{\sqrt{3}}}{2}sinφsin2x+\frac{1}{2}$,…(10分)
由于函數(shù)f(x)的最大值為$\frac{3}{2}$,即${(\frac{{\sqrt{3}}}{2}cosφ-\frac{1}{2})^2}+{(\frac{{\sqrt{3}}}{2}sinφ)^2}=1$,…(12分)
從而cosφ=0,又0≤φ<π,故$φ=\frac{π}{2}$. …(14分)
點評 本題考查兩角和與差的三角函數(shù),正弦函數(shù)的單調性的應用,考查計算能力.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{{3}^{9}}{{2}^{10}}$ | B. | -$\frac{{3}^{10}}{{2}^{10}}$ | C. | $\frac{{3}^{9}}{{2}^{10}}$ | D. | $\frac{{3}^{10}}{{2}^{10}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{3}{2}i$ | B. | $-\frac{3}{2}$ | C. | $\frac{3}{2}i$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2=2y | B. | x2=4y | C. | x2=2y或x2=4y | D. | x2=3y或x2=2y |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com