A. | 函數(shù)f(x)在(-∞,1)上單調(diào)遞增 | B. | 函數(shù)f(x)在(-∞,1)上單調(diào)遞減 | ||
C. | 函數(shù)f(x)在(-2,2)上單調(diào)遞增 | D. | 函數(shù)f(x)在(-2,2)上單調(diào)遞減 |
分析 先求出其導函數(shù),利用其導函數(shù)畫出原函數(shù)的大致圖象,結(jié)合圖象即可判斷出正確結(jié)論.
解答 解:因為f(x)=x3-12x+b,
所以:f′(x)=3x2-12=3(x-2)(x+2).
由f′(x)>0⇒x>2或x<-2.
f′(x)<0⇒-2<x<2.
∴f(x)在(-∞,-2),(2,+∞)上遞增,在(-2,2)上遞減.
且f(x)在x=-2處有極大值為:f(-2)=16+b,在x=2處有極小值為:f(2)=-16+b.
其大致圖象為:
故答案A,B,C錯,
故選:D.
點評 本題主要考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用導數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.解決此類問題的關鍵在于會求常見函數(shù)的導函數(shù),并知道導函數(shù)的應用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com