8.設函數(shù)f(x)=x3-12x+b,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)在(-∞,1)上單調(diào)遞增B.函數(shù)f(x)在(-∞,1)上單調(diào)遞減
C.函數(shù)f(x)在(-2,2)上單調(diào)遞增D.函數(shù)f(x)在(-2,2)上單調(diào)遞減

分析 先求出其導函數(shù),利用其導函數(shù)畫出原函數(shù)的大致圖象,結(jié)合圖象即可判斷出正確結(jié)論.

解答 解:因為f(x)=x3-12x+b,
所以:f′(x)=3x2-12=3(x-2)(x+2).
由f′(x)>0⇒x>2或x<-2.
f′(x)<0⇒-2<x<2.
∴f(x)在(-∞,-2),(2,+∞)上遞增,在(-2,2)上遞減.
且f(x)在x=-2處有極大值為:f(-2)=16+b,在x=2處有極小值為:f(2)=-16+b.
其大致圖象為:

故答案A,B,C錯,
故選:D.

點評 本題主要考查學生會利用導數(shù)求曲線上過某點切線方程的斜率,會利用導數(shù)研究函數(shù)的單調(diào)區(qū)間以及根據(jù)函數(shù)的增減性得到函數(shù)的最值.解決此類問題的關鍵在于會求常見函數(shù)的導函數(shù),并知道導函數(shù)的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.若x>-3,則函數(shù)$y=x+\frac{1}{x+3}$的最小值是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知函數(shù)f(x)=-2alnx+2(a+1)x-x2(a>0)
(1)若函數(shù)f(x)的圖象在點(2,f(2))處的切線與x軸平行,求實數(shù)a的值;
(2)討論f(x)的單調(diào)性;
(3)若f(x)≥-x2+2ax+b恒成立,求實數(shù)a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設函數(shù)f(x)=x3-$\frac{9}{2}$x2+6x+m.
(Ⅰ)對于x∈R,f′(x)≥a恒成立,求a的最大值;
(Ⅱ)若方程f(x)=0有且僅有一個實根,求m的取值范圍;
(Ⅲ)若g(x)=mx-6x2-2f(x)在(1,+∞)上存在單調(diào)遞增區(qū)間,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.定義在R上的函數(shù)f(x)滿足:f(-1)=4,f′(x)<1-f(x),f′(x)是f(x)的導函數(shù),則不等式ex+1f(x)>ex+1+3(其中e為自然對數(shù)的底數(shù))的解集為(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知g(x)為函數(shù)f(x)=2ax3-3ax2-12ax(a≠0)的導函數(shù),則它們的圖象可能是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知函數(shù)f(x)=x3-ax2,a∈R.
(1)求y=f(x)的單調(diào)區(qū)間;
(2)若曲線y=f(x)與直線y=x-1只有一個交點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的圖象關于原點對稱,且圖象在點(1,f(1))處的切線與直線x+6y+11=0垂直,導函數(shù)f′(x)的最大值為12.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=3x2+m有三個不同的實數(shù)根,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知命題P:方程x2+mx+1=0有兩個不等的負實根.命題Q:方程4x2+4(m-2)x+1=0無實根.若“P或Q”為真,“P且Q”為假,則實數(shù)m的取值范圍是(1,2]∪[3,+∞).

查看答案和解析>>

同步練習冊答案