已知復(fù)數(shù)z=1-2i,那么復(fù)數(shù)
1
z
的虛部是
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,復(fù)數(shù)的基本概念
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:把復(fù)數(shù)z=1-2i代入
1
z
,然后直接利用復(fù)數(shù)代數(shù)形式的除法運(yùn)算化簡,則答案可求.
解答: 解:由z=1-2i,
1
z
=
1
1-2i
=
1+2i
(1-2i)(1+2i)
=
1
5
+
2
5
i
,
∴復(fù)數(shù)
1
z
的虛部是
2
5

故答案為:
2
5
點(diǎn)評:本題考查了復(fù)數(shù)代數(shù)形式的除法運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={((x,y)||x|≤1,|y|≤1,x,y∈R},B={(x,y)|(x-a)2+(y-b)2≤1,x,y∈R,(a,b)∈A},則集合B所表示圖形的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足條件
x-y≥0
x+y≥0
x≤1
,則x-(
1
2
y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把兩個(gè)黑球和兩個(gè)白球排成一列,要求兩個(gè)白球不相鄰,則不同的排法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦點(diǎn)為F,若該雙曲線上存在點(diǎn)P,滿足以雙曲線虛軸為直徑的圓與線段PF相切與線段PF的中點(diǎn),則該雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,a1+a4+a7=45,a2+a5+a8=29,則a3+a6+a9等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
x
x+1
的值域?yàn)?div id="vrzpvzz" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是焦距等于6的雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若|PF1|+|PF2|=6a,且△PF1F2的最小內(nèi)角為30°,則C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于直線m、n和平面α、β、γ,有如下五個(gè)命題:
①若m∥α,m⊥n,則n⊥α;
②若m⊥α,m⊥n,則n∥α;
③若α⊥β,γ⊥β,則α∥γ;
④若m⊥α,m∥n,n?β,則α⊥β;
⑤若α∩β=m,β∩γ=n,m∥n,則α∥γ;
其中正確的命題個(gè)數(shù)為(  )
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

同步練習(xí)冊答案