分析 (1)由B1C1∥BC,能證明B1C1∥平面A1BC.
(2)由${V_{{A_1}-BP{C_1}}}={V_{{C_1}-{A_1}BP}},高為{C_1}{B_1}=2$,能求出三棱錐A1-BPC1的體積.
解答 證明:(1)如圖,∵棱長為2的正方體ABCD-A1B1C1D1中,
∴B1C1∥BC,
∵B1C1?平面ABC,BC?平面PBC,
∴B1C1∥平面A1BC;…(6分)(沒寫B(tài)1C1?平面ABC,扣兩分)
解:(2)∵${V_{{A_1}-BP{C_1}}}={V_{{C_1}-{A_1}BP}},高為{C_1}{B_1}=2$,
${S_{{A_1}B{P_1}}}=\frac{1}{2}{A_1}P×B{B_1}=\frac{1}{2}×1×2=1$,
∴${V_{{A_1}-BP{C_1}}}={V_{{C_1}-{A_1}BP}}=\frac{1}{3}×1×2=\frac{2}{3}$,
∴三棱錐A1-BPC1的體積為$\frac{2}{3}$.…(12分)
點評 本題考查線面平行的證明,考查三棱錐的體積的求法,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)+g(x) 為減函數(shù) | B. | f(x)-g(x)為增函數(shù) | C. | f(x)•g(x)是減函數(shù) | D. | $\frac{f(x)}{g(x)}$ 是增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $a+\frac{1}>b+\frac{1}{a}$ | B. | $\frac{a}>\frac{b+1}{a+1}$ | C. | $a-\frac{1}>b-\frac{1}{a}$ | D. | $\frac{2a+b}{a+2b}>\frac{a}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|x≥0或x≠1} | B. | {x|x≥0或 x≠±1} | C. | {x|x≥且x≠1} | D. | {x|x≥0且x≠1} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
分數(shù) | [50,59) | [60,69) | [70,79) | [80,89) | [90,100) |
甲班頻數(shù) | 5 | 6 | 4 | 4 | 1 |
乙班頻數(shù) | 1 | 3 | 6 | 5 | 5 |
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
P(K2≥0) | 0.10 | 0.05 | 0.025 | 0.010 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com