【題目】如圖,空間直角坐標(biāo)系中,四棱錐的底面是邊長為的正方形,且底面在平面內(nèi),點在軸正半軸上,平面,側(cè)棱與底面所成角為45°;
(1)若是頂點在原點,且過、兩點的拋物線上的動點,試給出與滿足的關(guān)系式;
(2)若是棱上的一個定點,它到平面的距離為(),寫出、兩點之間的距離,并求的最小值;
(3)是否存在一個實數(shù)(),使得當(dāng)取得最小值時,異面直線與互相垂直?請說明理由;
【答案】(1);(2);(3).
【解析】
(1)根據(jù)題意,求出點的坐標(biāo),代入拋物線方程,即可得出與的關(guān)系式;
(2)設(shè)點和的坐標(biāo),根據(jù)兩點間的距離公式,利用二次函數(shù)的基本性質(zhì),即可得出函數(shù)的最小值;
(3)由(2)可知,當(dāng)時,當(dāng)取得最小值時,求得,由異面直線與垂直時,,代入即可求出的值.
(1)由四棱錐是底面邊長為的正方形,則,
可設(shè)與所滿足的關(guān)系式為,將點橫坐標(biāo)和豎坐標(biāo)代入該方程得,
解得,因此,與所滿足的關(guān)系式為;
(2)設(shè)點,,
則.
令,設(shè),對稱軸為直線.
①當(dāng)時,即當(dāng)時,函數(shù)在上單調(diào)遞增,則,此時;
②當(dāng)時,即當(dāng)時,此時函數(shù)在取得最小值,即,
此時.
因此,;
(3)當(dāng)時,此時點與原點重合,則直線與為相交直線,不符;
當(dāng)時,則當(dāng)取最小值時,,
當(dāng)異面直線與垂直時,,即,化簡得.
,解得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù).
(1)是函數(shù)數(shù)的導(dǎo)函數(shù),記,若在區(qū)間上為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)設(shè)實數(shù),求證:對任意實數(shù),總有成立.
附:簡單復(fù)合函數(shù)求導(dǎo)法則為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若動點到定點與定直線的距離之和為4.
(1)求點的軌跡方程,并畫出方程的曲線草圖.
(2)記(1)得到的軌跡為曲線,若曲線上恰有三對不同的點關(guān)于點對稱,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.若存在實數(shù),使得關(guān)于的方程有三個不同的解,且函數(shù)僅有兩個零點,則實數(shù)的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個三口之家,共個大人,個小孩,約定星期日乘紅色、白色兩輛轎車結(jié)伴郊游,每輛車最多乘坐人,其中兩個小孩不能獨坐一輛車,則不同的乘車方法種數(shù)是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物.雖然只是地球大氣成分中含量很少的組分,但它對空氣質(zhì)量和能見度等有重要的影響.我國標(biāo)準(zhǔn)如下表所示.我市環(huán)保局從市區(qū)四個監(jiān)測點2018年全年每天的監(jiān)測數(shù)據(jù)中隨機(jī)抽取天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖如圖所示.
(Ⅰ)求這天數(shù)據(jù)的平均值;
(Ⅱ)從這天的數(shù)據(jù)中任取天的數(shù)據(jù),記表示其中空氣質(zhì)量達(dá)到一級的天數(shù),求的分布列和數(shù)學(xué)期望;
(Ⅲ)以天的日均值來估計一年的空氣質(zhì)量情況,則一年(按天計算)中大約有多少天的空氣質(zhì)量達(dá)到一級.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項等比數(shù)列,等差數(shù)列滿足,且是與的等比中項.
(1)求數(shù)列的通項公式;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,試判斷零點的個數(shù);
(Ⅲ)當(dāng)時,若對,都有()成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中, 平面,,以為鄰邊作平行四邊形,連接.
(1)求證:平面;
(2)若二面角為.
求證:平面平面;
求直線與平面所成角的正切值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com