18.已知中心在原點(diǎn),焦點(diǎn)在y軸上的橢圓C,其上一點(diǎn)P到兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為4,離心率為$\frac{{\sqrt{3}}}{2}$.
(1)求橢圓C的方程;
(2)若直線y=kx+1與曲線C交于A,B兩點(diǎn),求△AOB面積的取值范圍.

分析 (1)由點(diǎn)P到兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為4,離心率為$\frac{{\sqrt{3}}}{2}$,求出a,b,c,由此能求出橢圓C的方程.
(2)由$\left\{\begin{array}{l}\frac{y^2}{4}+{x^2}=1\\ y=kx+1\end{array}\right.$,得(k2+4)x2+2kx-3=0,由此利用韋達(dá)定理、弦長(zhǎng)公式、導(dǎo)數(shù)性質(zhì),結(jié)合已知條件能求出△AOB面積的取值范圍.

解答 解:(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1({a>b>0})$,
∵點(diǎn)P到兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為4,離心率為$\frac{{\sqrt{3}}}{2}$.
∴由條件得$a=2,c=\sqrt{3},b=1$,
所以橢圓C的方程$\frac{y^2}{4}+{x^2}=1$…(6分)
(2)設(shè)A(x1,y1),B(x2,y2),
由$\left\{\begin{array}{l}\frac{y^2}{4}+{x^2}=1\\ y=kx+1\end{array}\right.$,得(k2+4)x2+2kx-3=0,
故${x_1}+{x_2}=-\frac{2k}{{{k^2}+4}},{x_1}{x_2}=-\frac{3}{{{k^2}+4}}$①
設(shè)△AOB的面積為S,由${x_1}{x_2}=-\frac{3}{{{k^2}+4}}<0$,
知$S=\frac{1}{2}({|{x_1}|+|{x_2}|})=\frac{1}{2}|{{x_1}+{x_2}}|=\frac{1}{2}\sqrt{{{({{x_1}-{x_2}})}^2}-4{x_1}{x_2}}=2\sqrt{\frac{{{k^2}+3}}{{{{({{k^2}+4})}^2}}}}$
令k2+3=t,則t≥3,因此,$S=2\sqrt{\frac{1}{{t+\frac{1}{t}+2}}}$,
對(duì)函數(shù)$y=t+\frac{1}{t}({t≥3})$,知$y'=1-\frac{1}{t^2}=\frac{{{t^2}-1}}{t^2}>0$
因此函數(shù)$y=t+\frac{1}{t}$在t∈[3,+∞)上單增,
∴$t+\frac{1}{t}≥\frac{10}{3}$,∴$0<\frac{1}{{t+\frac{1}{t}+2}}≤\frac{3}{16}$,
∴△AOB面積的取值范圍j是(0,$\frac{\sqrt{3}}{2}$].…(12分)

點(diǎn)評(píng) 本題考查橢圓方程的求法,考查三角形面積的取值范圍的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理、弦長(zhǎng)公式、導(dǎo)數(shù)性質(zhì)、橢圓性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=-x1nx的圖象在點(diǎn)(1,f(1))處的切線的傾斜角為( 。
A.-1B.$\frac{π}{4}$C.-$\frac{π}{4}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.橢圓C1:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>0,b>0)的長(zhǎng)軸長(zhǎng)等于圓C2:x2+y2=4的直徑,且C1的離心率等于$\frac{1}{2}$.直線l1和l2是過(guò)點(diǎn)M(1,0)互相垂直的兩條直線,l1交C1于A,B兩點(diǎn),l2交C2于C,D兩點(diǎn).
(I)求C1的標(biāo)準(zhǔn)方程;
(Ⅱ)當(dāng)四邊形ABCD的面積為$\frac{12}{7}\sqrt{14}$時(shí),求直線l1的斜率k(k>0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.定義在區(qū)間(0,+∞)上的函數(shù)f(x)使不等式2f(x)<xf′(x)<3f(x)恒成立,其中f′(x)為f(x)的導(dǎo)數(shù),則(  )
A.8<$\frac{f(2)}{f(1)}$<16B.4<$\frac{f(2)}{f(1)}$<8C.3<$\frac{f(2)}{f(1)}$<4D.2<$\frac{f(2)}{f(1)}$<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF2垂直的直線交x軸負(fù)半軸于點(diǎn)Q,且F1恰是QF2的中點(diǎn).若過(guò)A、Q、F2三點(diǎn)的圓恰好與直線l:x-$\sqrt{3}$y-3=0相切.
(1)求橢圓C的方程;
(2)設(shè)直線l1:y=x+2與橢圓C交于G、H兩點(diǎn).在x軸上是否存在點(diǎn)P(m,0),使得以PG,PH為鄰邊的平行四邊形是菱形.如果存在,求出m的取值范圍,如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.如圖,已知曲線C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0,y≤0)的離心率e=$\frac{\sqrt{6}}{3}$,且經(jīng)過(guò)點(diǎn)G(1,-$\frac{\sqrt{6}}{3}$),曲線C2:x2=2y,過(guò)曲線C1上一點(diǎn)P作C2的兩條切線,切點(diǎn)分別為A,B.
(Ⅰ)求曲線C1的方程;
(Ⅱ)求△PAB面積的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的離心率為$\frac{{\sqrt{2}}}{2}$,長(zhǎng)軸AB上2016個(gè)等分點(diǎn)從左到右依次為點(diǎn)M1,M2,…,M2015,過(guò)M1點(diǎn)作斜率為k(k≠0)的直線,交橢圓C于P1,P2兩點(diǎn),P1點(diǎn)在x軸上方;過(guò)M2點(diǎn)作斜率為k(k≠0)的直線,交橢圓C于P3,P4兩點(diǎn),P3點(diǎn)在x軸上方;以此類推,過(guò)M2015點(diǎn)作斜率為k(k≠0)的直線,交橢圓C于P4029,P4030兩點(diǎn),P4029點(diǎn)在x軸上方,則4030條直線AP1,AP2,…,AP4030的斜率乘積為-2-2015

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.若橢圓上的點(diǎn)到焦點(diǎn)的距離的最小值為5,最大值為15,則橢圓的短軸長(zhǎng)為10$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知(ax+$\frac{1}{x}$)6二項(xiàng)展開(kāi)式的第五項(xiàng)系數(shù)為$\frac{15}{2}$,則正實(shí)數(shù)a的值為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案