【題目】設(shè)函數(shù)f(x)=ax3﹣3x+1(x∈R),若對(duì)于任意的x∈[﹣1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為

【答案】4
【解析】解:由題意,f′(x)=3ax2﹣3, 當(dāng)a≤0時(shí)3ax2﹣3<0,函數(shù)是減函數(shù),f(0)=1,只需f(1)≥0即可,解得a≥2,與已知矛盾,
當(dāng)a>0時(shí),令f′(x)=3ax2﹣3=0解得x=± ,
①當(dāng)x<﹣ 時(shí),f′(x)>0,f(x)為遞增函數(shù),
②當(dāng)﹣ <x< 時(shí),f′(x)<0,f(x)為遞減函數(shù),
③當(dāng)x> 時(shí),f(x)為遞增函數(shù).
所以f( )≥0,且f(﹣1)≥0,且f(1)≥0即可
由f( )≥0,即a ﹣3 +1≥0,解得a≥4,
由f(﹣1)≥0,可得a≤4,
由f(1)≥0解得2≤a≤4,
綜上a=4為所求.
所以答案是:4.
【考點(diǎn)精析】關(guān)于本題考查的函數(shù)的最大(小)值與導(dǎo)數(shù),需要了解求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩機(jī)床同時(shí)加工直徑為100mm的零件,為檢驗(yàn)質(zhì)量,隨機(jī)從中各抽取5件,測(cè)量結(jié)果如圖,請(qǐng)說明哪個(gè)機(jī)床加工的零件較好?

99

100

98

100

103

99

100

102

99

100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個(gè)平面圖形的斜二測(cè)畫法的直觀圖是一個(gè)邊長為a的正方形,則原平面圖形的面積為(
A. a2
B.a2
C.2 a2
D.2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1= ,D為AA1的中點(diǎn),BD與AB1交于點(diǎn)O,CO⊥側(cè)面ABB1A1

(1)證明:BC⊥AB1;
(2)若OC=OA,求直線C1D與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)y=ea1x+4x(x∈R)有大于零的極值點(diǎn),則實(shí)數(shù)a范圍是(
A.a>﹣3
B.a<﹣3
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=xex﹣ax2﹣x,a∈R.
(1)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)x≥1時(shí),恒有f(x)≥xex+ax2成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在(0,+∞)內(nèi)為增函數(shù)的是(
A.y=sinx
B.y=x3﹣x
C.y=lnx﹣x
D.y=xex

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)拋擲兩次骰子,得到的點(diǎn)數(shù)分別為m,n,記向量 =(m,n), =(1,﹣1)的夾角為θ,則θ∈(0, )的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點(diǎn)A到平面BDE的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案