分析 由$\frac{n}{a_n}=\frac{{2{a_{n-1}}+n-1}}{{{a_{n-1}}}}(n∈{N^*},n≥2)$,化為$\frac{n}{{a}_{n}}$-$\frac{n-1}{{a}_{n-1}}$=2,再利用等差數(shù)列的通項(xiàng)公式即可得出.
解答 解:∵$\frac{n}{a_n}=\frac{{2{a_{n-1}}+n-1}}{{{a_{n-1}}}}(n∈{N^*},n≥2)$,∴$\frac{n}{{a}_{n}}$-$\frac{n-1}{{a}_{n-1}}$=2,
則數(shù)列{$\frac{n}{{a}_{n}}$}為等差數(shù)列,公差為2,首項(xiàng)為3.
∴$\frac{n}{{a}_{n}}$=3+2(n-1)=2n+1.
∴an=$\frac{n}{2n+1}$.
故答案為:$\frac{n}{2n+1}$.
點(diǎn)評(píng) 本題考查了數(shù)列遞推關(guān)系、等差數(shù)列的通項(xiàng)公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=x-1 | B. | y=x2-1 | C. | y=2x | D. | y=lgx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1) | B. | [0,1) | C. | [0,4] | D. | [-4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com