1.已知等差數(shù)列{an}與等差數(shù)列{bn}的前n項和分別為Sn和Tn,若$\frac{S_n}{T_n}=\frac{3n-1}{2n+3}$,則$\frac{{{a_{10}}}}{{{b_{10}}}}$=( 。
A.$\frac{3}{2}$B.$\frac{14}{13}$C.$\frac{56}{41}$D.$\frac{29}{23}$

分析 由等差數(shù)列的求和公式和性質可得$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{{a}_{1}+{a}_{19}}{_{1}+_{19}}$=$\frac{{S}_{19}}{{T}_{19}}$,代值計算可得.

解答 解:由等差數(shù)列的求和公式和性質可得$\frac{{{a_{10}}}}{{{b_{10}}}}$=$\frac{{a}_{1}+{a}_{19}}{_{1}+_{19}}$=$\frac{{S}_{19}}{{T}_{19}}$=$\frac{56}{41}$.
故選C.

點評 本題考查等差數(shù)列的求和公式和等差數(shù)列的性質,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.過原點O作圓x2+y2-8x=0的弦OA,延長OA到N,使|OA|=|AN|,求點N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知曲線C的方程為(x-3)2+(x-4)2=16,直線l1:kx-y-k=0和l2:x+2y+4=0,直線l1與曲線C交于不相同的兩點P,Q.
(1)求k的范圍;
(2)若l1與x軸的交點為A,設PQ中點M,l1與l2的交點為N,求證:|AN|•|AM|為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖(1),三棱錐P-ABC中,PC⊥平面ABC,F(xiàn),G,H,分別是PC,AC,BC的中點,I是線段FG上任意一點,PC=AB=2BC,過點F作平行于底面ABC的平面截三棱錐,得到幾何體DEF-ABC,如圖(2)所示.
(1)求證:HI∥平面ABD;
(2)若AC⊥BC,求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知數(shù)列{an}滿足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分別是公差不為零的等差數(shù)列{bn}的前三項.
(1)求k的值;
(2)求證:對任意的n∈N*,bn,b2n,b4n不可能是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知$0<α<\frac{π}{2},sinα=\frac{{2\sqrt{5}}}{5}$.
(1)求tanα的值;       
(2)求$\frac{{4sin({π-α})+2cos({2π-α})}}{{sin({\frac{π}{2}-α})+sin({-α})}}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,角A,B,C的對邊分別為a,b,c,$cosC=\frac{3}{10}$.
(1)若$\overrightarrow{CA}•\overrightarrow{CB}=\frac{9}{2}$,求△ABC的面積;
(2)設向量$\overrightarrow x=(2sinB,-\sqrt{3})$,$\overrightarrow y=(cos2B,1-2{sin^2}\frac{B}{2})$,且$\overrightarrow x∥\overrightarrow y$,求角B的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知橢圓與雙曲線$\frac{x^2}{3}-\frac{y^2}{2}=1$有共同的焦點,且離心率為$\frac{{\sqrt{5}}}{5}$,則橢圓的標準方程為( 。
A.$\frac{x^2}{20}+\frac{y^2}{25}=1$B.$\frac{x^2}{25}+\frac{y^2}{5}=1$C.$\frac{x^2}{25}+\frac{y^2}{20}=1$D.$\frac{x^2}{5}+\frac{y^2}{25}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知點F(-2,0)在以原點為圓心的圓O內,且過F的最短的弦長為2.
(1)求圓O的方程;
(2)過F任作一條與兩坐標標軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內角平分線,求M點的坐標.

查看答案和解析>>

同步練習冊答案