A. | [-4,4) | B. | (-4,4] | C. | (-∞,4) | D. | (-∞,4)∪[2,+∞) |
分析 令g(x)=x2-ax-3a,則g(x)在(-∞,-2]上單調(diào)遞減且g(-2)>0,根據(jù)二次函數(shù)的性質(zhì)列不等式組得出a的范圍.
解答 解:令g(x)=x2-ax-3a,
則g(x)在(-∞,-2)上單調(diào)遞減且g(x)>0在(-∞,-2]上恒成立.
∴$\left\{\begin{array}{l}{\frac{a}{2}≥-2}\\{4+2a-3a>0}\end{array}\right.$,解得-4≤a<4,
故選:A.
點評 本題考查了函數(shù)單調(diào)性的判斷,二次函數(shù)的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2n-1 | B. | 1或3n-1 | C. | 3n | D. | 3n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{2}}{2}$ | B. | -$\sqrt{2}$ | C. | -$\frac{\sqrt{6}}{6}$ | D. | -$\frac{\sqrt{6}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | i<9? | B. | i<10? | C. | i<11? | D. | i<12? 2i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com