已知函數(shù)f(x)=ax3+bx2-2x在x=-2,x=1處取得極值.
①求函數(shù)f(x)的解析式;
②求函數(shù)f(x)在[-3,3]上的最大值和最小值.
①∵f(x)=ax3+bx2-2x
∴f′(x)=3ax2+2bx-2…..(2分)
由題意知f′(-2)=0,f′(1)=0….(3分)
3a×4-4b-2=0
3a+2b-2=0
⇒a=
1
3
,b=
1
2
…..(5分)
所以f(x)=
1
3
x3+
1
2
x2-2x…..(7分)
②因?yàn)閒(-2)=
1
3
(-2)3+
1
2
(-2)2-2×(-2)=
10
3

f(1)=
1
3
×13+
1
2
×12-2×1=-
7
6

f(-3)=
1
3
(-3)3+
1
2
(-3)2-2×(-3)=
3
2

f(3)=
1
3
×33+
1
2
×32
-2×3=
15
2
.….(11分)
所以:函數(shù)f(x)的最大值為
15
2
,最小值-
7
6
…(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=ex(sinx-cosx),x∈(0,2013π),則函數(shù)f(x)的極大值之和為(  )
A.
e(1-e2012π)
e-1
B.
eπ(1-e2012π)
1-e
C.
eπ(1-e1006π)
1-e
D.
eπ(1-e1006π)
1-eπ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)y=3x-x3在(0,+∞)上( 。
A.有最大值2B.有最小值2C.有最小值-2D.有最大值-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=x+
1
x-2
,
(1)當(dāng)x>2時,求函數(shù)f(x)的最小值;
(2)當(dāng)x≥4時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若函數(shù)f(x)=ax3+bx2+cx+d是奇函數(shù),且f(x)極小值=f(-
3
3
)=-
2
3
9

(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)在[-1,m](m>-1)上的最大值;
(3)設(shè)函數(shù)g(x)=
f(x)
x2
,若不等式g(x)•g(kx)≥k2-
1
k
(k>0)
恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一出租車每小時耗油的費(fèi)用與其車速的立方成正比,當(dāng)車速為80km/h時,該車耗油的費(fèi)用為8元/h,其他費(fèi)用為12元/h.甲乙兩地的公路里程為160km,在不考慮其他因素的前提下,為了使該車開往乙地的總費(fèi)用最低,該車的車速應(yīng)當(dāng)確定為多少公里/小時?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若規(guī)定
.
ab
cd
.
=ad-bc
,不等式
.
x+1x
mx-1
.
≥-2
對一切x∈(0,1]恒成立,則實(shí)數(shù)m的最大值為(  )
A.0B.2C.
5
2
D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)f(x)=
a
x
+lnx
,其中a為實(shí)常數(shù).
(1)討論f(x)的單調(diào)性;
(2)不等式f(x)≥1在x∈(0,1]上恒成立,求實(shí)數(shù)a的取值范圍;
(3)若a=0,設(shè)g(n)=1+
1
2
+
1
3
+…+
1
n
,h(n)=
1
23
+
2
32
+
3
43
+…+
n-1
n3
(n≥2,n∈N+).是否存在實(shí)常數(shù)b,既使g(n)-f(n)>b又使h(n)-f(n+1)<b對一切n≥2,n∈N+恒成立?若存在,試找出b的一個值,并證明;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

統(tǒng)計表明某型號汽車在勻速行駛中每小時的耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)為y=
1
128000
x3-
3
80
x+8(0<x<120)

(1)當(dāng)x=64千米/小時時,要行駛100千米耗油量多少升?
(2)若油箱有22.5升油,則該型號汽車最多行駛多少千米?

查看答案和解析>>

同步練習(xí)冊答案