Processing math: 100%
1.設(shè)f(x)=lnx,g(x)=12x|x|.
(1)求g(x)在x=-1處的切線方程;
(2)令F(x)=x•f(x)-g(x),求F(x)的單調(diào)區(qū)間;
(3)若任意x1,x2∈[1,+∞)且x1>x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求實數(shù)m的取值范圍.

分析 (1)求出函數(shù)g(x)的導(dǎo)數(shù),計算g(-1),g′(-1),求出切線方程即可;
(2)求出函數(shù)F(x)的導(dǎo)函數(shù),得到導(dǎo)函數(shù)的單調(diào)性,從而求出函數(shù)F(x)的單調(diào)性即可;
(3)已知可轉(zhuǎn)化為x1>x2≥1時,mg(x1)-x1f(x1)≥mg(x2)-x2f(x2)恒成立,令h(x)=mg(x)-xf(x)=m2x2-xlnx,則h(x)為單調(diào)遞增的函數(shù)結(jié)合導(dǎo)數(shù)工具即可求得實數(shù)m的取值范圍.

解答 解:(1)x<0時,g(x)=-12x2,g′(x)=-x,
故g(-1)=-12,g′(-1)=1,
故切線方程是:y+12=(x+1),
即x-y+12=0;
(2)F(x)=xlnx-12x|x|=xlnx-12x2,(x>0),
F′(x)=lnx-x+1,F(xiàn)″(x)=1x-1,
令F″(x)>0,解得:0<x<1,令F″(x)<0,解得:x>1,
故F′(x)在(0,1)遞增,在(1,+∞)遞減,
故F′(x)≤F′(1)=0,
故F(x)在(0,+∞)遞減;
(3)已知可轉(zhuǎn)化為x1>x2≥1時,mg(x1)-x1f(x1)≥mg(x2)-x2f(x2)恒成立,
令h(x)=mg(x)-xf(x)=m2x2-xlnx,則h(x)為單調(diào)遞增的函數(shù),
故h′(x)=mx-lnx-1≥0恒成立,即m≥lnx+1x恒成立,
令m(x)=lnx+1x,則m′(x)=-lnxx2
∴當(dāng)x∈[1,+∞)時,m′(x)≤0,m(x)單調(diào)遞減,
m(x)≤m(1)=1,
故m≥1.

點評 本題考查了切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用,是一道中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U=R,集合A={x∈N|x2-6x+5≤0},B={x∈N|x>2},圖中陰影部分所表示的集合為( �。�
A.{0,1,2}B.{1,2}C.{1}D.{0,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知純虛數(shù)z滿足(1-2i)z=1+ai,則實數(shù)a等于(  )
A.12B.-12C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=x2-1,則使f(x)>0的x的取值范圍x>1或-1<x<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)a,b為實數(shù),函數(shù)y1=x2+ax+b,y2=x2+bx+a均有兩個不同的零點,且y=y1y2只有三個不同零點,則這三個不同零點之和為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知三棱柱ABC-A1B1C1的側(cè)棱與底面ABC垂直,且AA1=4,AC=BC=2,∠ACB=90°.
(1)證明:AC⊥平面BCC1B1
(2)求直線BB1與平面AB1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在直角梯形ABCD中,∠A=90°,AD∥BC,BC=2AD,△ABD的面積為2,若DE=12EC,BE⊥DC,則DADC的值為( �。�
A.-2B.-22C.2D.22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖<1>:在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于E點,把△DEC沿CE折到D′EC的位置,使D′A=23,如圖<2>:若G,H分別為D′B,D′E的中點.
(1)求證:GH⊥平面AD′C;
(2)求平面D′AB與平面D′CE的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知等比數(shù)列{an}的前n項和為Sn,且a1+a3=52,a2+a4=54,則S6=6316

查看答案和解析>>

同步練習(xí)冊答案