2.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求sin(2α-$\frac{π}{4}$)的值.

分析 (1)利用誘導公式,同角三角函數(shù)的基本關系,求得sinα+cosα的值.
(2)利用求得sinα和cosα的值,再利用兩角和差的三角公式、二倍角公式,求得sin(2α-$\frac{π}{4}$)的值.

解答 解:(1)∵已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=cosα-sinα=-$\frac{\sqrt{5}}{5}$,
平方可得1-2sinαcosα=$\frac{1}{5}$,∴2sinαcosα=$\frac{4}{5}$,
∴(sinα+cosα)2=1+2sinαcosα=$\frac{9}{5}$,∴sinα+cosα=$\frac{3\sqrt{5}}{5}$.
(2)∵cosα-sinα=-$\frac{\sqrt{5}}{5}$,sinα+cosα=$\frac{3\sqrt{5}}{5}$,
∴sinα=$\frac{2\sqrt{5}}{5}$,cosα=$\frac{\sqrt{5}}{5}$,∴sin2α=2sinαcosα=$\frac{4}{5}$ cos2α=2cos2α-1=-$\frac{3}{5}$,
∴sin2αcos$\frac{π}{4}$-cos2αsin$\frac{π}{4}$=$\frac{2\sqrt{5}}{5}•\frac{\sqrt{2}}{2}$-(-$\frac{3}{5}$)•$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$.

點評 本題主要考查同角三角函數(shù)的基本關系,兩角和差的三角公式、二倍角公式、誘導公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.《張丘建算經(jīng)》是我國南北朝時期的一部重要數(shù)學著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結果在三百多年后的印度才首次出現(xiàn).書中有這樣一個問題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布10尺,一個月(按30天計算)總共織布6尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.根據(jù)平面向量基本定理,若$\overrightarrow{e_1},\overrightarrow{e_2}$為一組基底,同一平面的向量$\overrightarrow a$可以被唯一確定地表示為$\overrightarrow a=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,則向量$\overrightarrow a$與有序實數(shù)對(x,y)一一對應,稱(x,y)為向量$\overrightarrow a$在基底$\overrightarrow{e_1},\overrightarrow{e_2}$下的坐標;特別地,若$\overrightarrow{e_1},\overrightarrow{e_2}$分別為x,y軸正方向的單位向量$\overrightarrow i,\overrightarrow j$,則稱(x,y)為向量$\overrightarrow a$的直角坐標.
(I)據(jù)此證明向量加法的直角坐標公式:若$\overrightarrow a=({x_1},{y_1}),\overrightarrow b=({x_2},{y_2})$,則$\overrightarrow a+\overrightarrow b=({x_1}+{x_2},{y_1}+{y_2})$;
(II)如圖,直角△OAB中,$∠AOB={90°},|\overrightarrow{OA}|=1,|\overrightarrow{OB}|=\sqrt{3}$,C點在AB上,且$\overrightarrow{OC}⊥\overrightarrow{AB}$,求向量$\overrightarrow{OC}$在基底$\overrightarrow{OA},\overrightarrow{OB}$下的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知F是雙曲線$C:{x^2}-\frac{y^2}{8}=1$的右焦點,P是C左支上一點,$A({0,6\sqrt{6}})$,則△APF周長最小值為32.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.一個袋中裝有大小相同的5個白球和3個紅球,現(xiàn)在不放回的取2次球,每次取出一個球,記“第1次拿出的是白球”為事件A,“第2次拿出的是白球”為事件B,則P(B|A)是$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若直線x+y+m=0上存在點P可作圓O:x2+y2=1的兩條切線PA、PB,切點為A、B,且∠APB=60°,則實數(shù)m的取值范圍為$[-2\sqrt{2},2\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在平面直角坐標系xOy中,曲線x2+y2=2|x|+2|y|圍成的圖形的面積為6π+8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.一次測試中,為了了解學生的學習情況,從中抽取了n個學生的成績進行統(tǒng)計.按照的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出得分在的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x,y的值;
(2)求這n名同學成績的平均數(shù)、中位數(shù)及眾數(shù);
(3)在選取的樣本中,從成績是80分以上(含80分)的同學中隨機抽取3名同學參加志愿者活動,求這3名同學中恰有兩名同學得分在[90,100]內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知直線mx+4y-2=0與2x-5y+1=0互相垂直,則m的值為( 。
A.10B.20C.0D.-4

查看答案和解析>>

同步練習冊答案