12.《張丘建算經(jīng)》是我國南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織得快,而且每天增加的數(shù)量相同,已知第一天織布10尺,一個(gè)月(按30天計(jì)算)總共織布6尺,問每天增加的數(shù)量為多少尺?該問題的答案為( 。
A.$\frac{8}{29}$尺B.$\frac{16}{29}$尺C.$\frac{32}{29}$尺D.$\frac{1}{2}$尺

分析 設(shè)該婦子織布每天增加d尺,由等差數(shù)列的前n項(xiàng)和公式能求出結(jié)果.

解答 解:設(shè)該婦子織布每天增加d尺,
由題意知${S}_{30}=30×5+\frac{30×29}{2}d$,
解得d=$\frac{16}{29}$.
故該女子織布每天增加$\frac{16}{29}$尺.
故選:B.

點(diǎn)評 本題考查等差數(shù)列的公差的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的前n項(xiàng)和公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知△ABC的邊長為a,b,c,定義它的等腰判別式為D=max{a-b,b-c,c-a}+min{a-b,b-c,c-a},則“D=0”是△ABC為等腰三角形的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4)、B(5,-2)、C(1,2),求:
(1)邊BC中點(diǎn)D的坐標(biāo);
(2)BC邊上中線AD的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{{x^2}+x+1,x≥0}\\{2x+1,x<0}\end{array}}\right.$,若f(sinα+sinβ+sinr-1)=-1,f(cosα+cosβ+cosr+1)=3,則cos(α-β)+cos(β-r)的值為(  )
A.1B.2C.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,是一個(gè)組合體的三視圖,圖中四邊形是邊長為2的正方形,圓的直徑為2,那么這個(gè)組合體的表面積是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖是導(dǎo)函數(shù)y=f′(x)的圖象,對于函數(shù)y=f(x)的極值點(diǎn)的說法:?
①x1和x5是函數(shù)y=f(x)的極大值點(diǎn);
②?x3和x6是函數(shù)y=f(x)的極小值點(diǎn);
③x2是函數(shù)y=f(x)的極大值點(diǎn);
④x4是函數(shù)y=f(x)的極小值點(diǎn);
⑤x6不是函數(shù)y=f(x)的一個(gè)極值點(diǎn).
其中正確的序號有③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在單調(diào)遞增的等差數(shù)列{an}中,a3,a7,a15成等比數(shù)列,前5項(xiàng)之和等于20.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)${b_n}=\frac{2}{{{a_n}{a_{n+1}}}}$,記數(shù)列{bn}的前n項(xiàng)和為Tn,求使${T_n}≤\frac{24}{25}$成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列已知數(shù)列{an}的前n項(xiàng)和是Sn,且Sn+$\frac{1}{3}$an=1(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log4(1-Sn+1)(n∈N+),Tn=$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{{1}_{\;}}{_{n}_{n+1}}$,求Tn的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知0<α<$\frac{π}{2}$,cos(2π-α)-sin(π-α)=-$\frac{\sqrt{5}}{5}$
(1)求sinα+cosα的值;
(2)求sin(2α-$\frac{π}{4}$)的值.

查看答案和解析>>

同步練習(xí)冊答案