橢圓的左右焦點分別為,過焦點的直線交該橢圓于兩點,若的內切圓面積為,兩點的坐標分別為,則的值為 。
【解析】
試題分析:由橢圓,所以a=4,b=3,∴c=,左、右焦點F1(-,0)、F2(,0),△ABF2的內切圓面積為π,則內切圓的半徑為r=1,而△ABF2的面積=△AF1F2的面積+△BF1F2的面積=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=|y2-y1|(A、B在x軸的上下兩側)
又△ABF2的面積═×|r(|AB|+|BF2|+|F2A|=×(2a+2a)=2a=8.
所以|y2-y1|=8, |y2-y1|=,故答案為。
考點:本試題主要考查了直線與圓錐曲線的綜合問題,橢圓的簡單性質,三角形內切圓性質.
點評:解決該試題的關鍵是先根據(jù)橢圓方程求得a和c,及左右焦點的坐標,進而根據(jù)三角形內切圓面積求得內切圓半徑,進而根據(jù)△ABF2的面積=△AF1F2的面積+△BF1F2的面積求得△ABF2的面積= |y2-y1|進而根據(jù)內切圓半徑和三角形周長求得其面積,建立等式求得|y2-y1|的值.
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
MA |
MB |
AB |
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆廣東省“十!备呷谝淮温(lián)考文科數(shù)學試卷(解析版) 題型:解答題
已知橢圓的左右焦點分別為,且經過點,為橢圓上的動點,以為圓心,為半徑作圓.
(1)求橢圓的方程;
(2)若圓與軸有兩個交點,求點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年黑龍江省哈爾濱市高三上學期期末考試理科數(shù)學 題型:選擇題
橢圓的左右焦點分別為,弦過,若的內切圓周長為,兩點的坐標分別為,則值為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(文) 題型:解答題
(本題滿分13分)
已知橢圓的左右焦點分別為,.在橢圓中有一內接三角形,其頂點的坐標,所在直線的斜率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)當的面積最大時,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com