下列各圖中,不能表示函數(shù)y=f(x)的圖象的是(  )
A、
B、
C、
D、
考點(diǎn):函數(shù)的概念及其構(gòu)成要素
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的定義可知:對(duì)于x的任何值y都有唯一的值與之相對(duì)應(yīng),緊扣概念,分析圖象即可得到結(jié)論.
解答: 解:根據(jù)函數(shù)的定義可知,只有C不能表示函數(shù)關(guān)系.
故選C.
點(diǎn)評(píng):本題主要考查了函數(shù)的圖象,函數(shù)的意義反映在圖象上簡(jiǎn)單的判斷方法是:做垂直x軸的直線在左右平移的過(guò)程中與函數(shù)圖象只會(huì)有一個(gè)交點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在圓x2+y2=4上有一定點(diǎn)A(2,0)和兩個(gè)動(dòng)點(diǎn)B、C,使∠BAC=60°恒成立,則三角形的重心H的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b是不相等的正數(shù),且a2-a+b2-b+ab=0,則a+b的取值范圍是( 。
A、(0,
4
3
B、(1,
4
3
C、(0,
3
2
D、(1,
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
1
|x-2|+1
-
1
3
,g(x)=|x-2|-2,記F(t)=
t
0
[f(x)-g(x)]dx,函數(shù)F(t)的導(dǎo)函數(shù)為F′(t),則函數(shù)y=F′(t),t∈(0,4)的大致圖象是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
3
sin2x+(sinx+cosx)(sinx-cosx).
(1)求f(x)的單調(diào)區(qū)間和對(duì)稱軸;
(2)若f(θ)=
3
,其中0<θ<
π
2
,求cos(θ+
π
6
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),則實(shí)數(shù)m的取值范圍是(  )
A、m<
1
2
B、m>
1
2
C、-1≤m<
1
2
D、
1
2
<m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinA:sinB:sinC=3:5:7,則這個(gè)三角形的最小外角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax-(k-1)a-x(a>0且a≠1)是定義域?yàn)镽的奇函數(shù).
(1)求k值;
(2)若f(1)=
3
2
,且g(x)=a2x+a-2x-2m,f(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3(ax2+2x+3),a∈R.
(1)若f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍;
(2)若f(x)的值域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案