1.在△ABC中,已知cosA=$\frac{3}{5}$,cosB=$\frac{12}{13}$,則cosC的值為( 。
A.$\frac{56}{65}$B.-$\frac{56}{65}$C.-$\frac{16}{65}$D.$\frac{56}{65}$或-$\frac{16}{65}$

分析 利用三角形中,兩角和差的余弦公式進行化簡即可.

解答 解:在三角形ABC中,
∵cosA=$\frac{3}{5}$,cosB=$\frac{12}{13}$,
∴sinA=$\frac{4}{5}$,sinB=$\frac{5}{13}$,
則cosC=cos(π-A-B)=-cos(A+B)=-(cosAcosB-sinAsinB)=-($\frac{3}{5}$×$\frac{12}{13}$-$\frac{4}{5}$×$\frac{5}{13}$)=-$\frac{16}{65}$,
故選:C.

點評 本題主要考查三角函數(shù)的化簡和求值,利用兩角和差的余弦公式進行化簡是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知a>0,b>0,且$\frac{1}{a}+\frac{1}=1$,則a+4b的最小值為( 。
A.4B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知x、y滿足約束條件$\left\{\begin{array}{l}{x-5≤0}\\{x+y-4≥0}\\{2x-y-5≥0}\end{array}\right.$,則z=2x+y的最小值為7.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若sin($\frac{π}{6}$-α)=$\frac{1}{3}$,cos($\frac{2π}{3}$+2α)=( 。
A.$\frac{2}{9}$B.-$\frac{2}{9}$C.$\frac{7}{9}$D.-$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.設$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$為單位向量,且$\overrightarrow{{e}_{1}}$與$\overrightarrow{{e}_{2}}$的夾角為60°,若$\overrightarrow{a}$=x$\overrightarrow{{e}_{1}}$+y$\overrightarrow{{e}_{2}}$,$\overrightarrow$=x$\overrightarrow{{e}_{1}}$-y$\overrightarrow{{e}_{2}}$(其中x>0,y>0),則|$\overrightarrow{{e}_{1}}$-3$\overrightarrow{{e}_{2}}$|=$\sqrt{7}$,$\frac{|\overrightarrow{a}|}{|\overrightarrow|}$的最大值是$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.函數(shù)y=sinx-$\frac{1}{2}$cosx(x∈[0,$\frac{π}{2}$])的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知c=2a,cosB=$\frac{1}{4}$,b=2.
(1)求△ABC的面積;
(2)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知cos($\frac{π}{6}$+θ)=$\frac{1}{3}$,那么cos($\frac{5π}{6}$-θ)=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.過點P(3,0)有一直線l,且點P是它在兩條直線l1:2x-y-2=0與l2:x+y+3=0之間的線段的一個三等分點,求直線l的方程.

查看答案和解析>>

同步練習冊答案