已知橢圓的離心率,長軸的左右端點分別為,
(1)求橢圓的方程;
(2)設動直線與曲線有且只有一個公共點,且與直線相交于點.問在軸上是否存在定點,使得以為直徑的圓恒過定點,若存在,求出點坐標;若不存在,說明理由.
(1);(2)存在,

試題分析:(1)由已知,得,再根據(jù)離心率求,進而求,進而根據(jù)焦點位置求橢圓方程;(2)聯(lián)立直線方程和橢圓方程,得關(guān)于的一元二次方程,由題意,列方程得,同時可求出切點坐標,再求,設軸上存在滿足條件的點,以為直徑的圓恒過定點等價于,列方程得,由題意該方程與無關(guān),故,從而求得點坐標,本題還可以先從特殊值入手,確定定點的坐標,再證明以為直徑的圓恒過定點
試題解析:(1)由已知    2分
,
橢圓的方程為;    4分
(2),消去,得,則,可得,設切點,則,,故,又由,得,設在上存在定點,使得以為直徑的圓恒過定點,,即    10分
,
對滿足恒成立,

故在軸上存在定點,使得以為直徑的圓恒過定點.  14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個頂點和兩個焦點構(gòu)成的三角形的面積為4.
(1)求橢圓的方程;
(2)已知直線與橢圓交于、兩點,試問,是否存在軸上的點,使得對任意的,為定值,若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點是橢圓的一個頂點,的長軸是圓的直徑,、是過點且互相垂直的兩條直線,其中交圓兩點,交橢圓于另一點.

(1)求橢圓的方程;
(2)求面積的最大值及取得最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且

(1)求橢圓的標準方程;
(2)設P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標原點),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:上,且橢圓的離心率e =

(1)求橢圓的標準方程;
(2)設P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的一個焦點與拋物線的焦點重合,則該橢圓的離心率是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓的左焦點為與過原點的直線相交于兩點,連接,若,則橢圓的離心率
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知離心率為的雙曲線和離心率為的橢圓有相同的焦點、,是兩曲線的一個公共點,若,則等于(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.

(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.

查看答案和解析>>

同步練習冊答案