數(shù)列{an}的通項式an=
n
n2+90
,則數(shù)列{an}中的最大項是( 。
A、第9項
B、第10項和第9項
C、第10項
D、第9項和第8項
考點:數(shù)列的函數(shù)特性
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)考察函數(shù)f(x)=
x
x2+90
(x>0)的單調(diào)性即可得出.
解答: 解:由數(shù)列{an}的通項式an=
n
n2+90
,考察函數(shù)f(x)=
x
x2+90
(x>0)的單調(diào)性.
∵f′(x)=
90-x2
(x2+90)2
,
令f′(x)≥0,解得0<x≤3
10
,此時函數(shù)f(x)單調(diào)遞增;令f′(x)<0,解得x>3
10
,此時函數(shù)f(x)單調(diào)遞減.
9<3
10
<10
,f(9)=f(10).
∴數(shù)列{an}中的最大項是第10項和第9項.
故選:B.
點評:本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值,考查了計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱ABCDE
E
銷售額x(萬元)35679
9
利潤額y(萬元)23345
(1)畫出銷售額和利潤額的散點圖;

(2)若已知利潤額y對銷售額x的回歸直線方程為
y
=0.5x+a,求a;
(3)估計要達到10萬元的利潤額,銷售額大約多少萬元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把一數(shù)列依次按第一個括號內(nèi)一個數(shù),第二個括號內(nèi)兩個數(shù),第三個括號內(nèi)三個數(shù),第四個括號內(nèi)一個數(shù),…循環(huán)分為(1),(3,5),(7,9,11),(13),(15,17),(19,21,23),(25),…,則第100個括號內(nèi)的數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球的體積為36π,球的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在海島A上有一座海拔
3
km的山峰,山頂設(shè)有一個觀察站P.有一艘輪船按一固定方向做勻速直線航行,上午11:00時,測得此船在島北偏東15°、俯角為30°的B處,到11:10時,又測得該船在島北偏西45°、俯角為60°的C處.
(1)求船的航行速度;
(2)求船從B到C行駛過程中與觀察站P的最短距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)n=∫0 
n
2
4cosxdx,則二項式(x-
1
x
n的展開式的常數(shù)項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(-2x+
π
6
)的單調(diào)遞增區(qū)間為( 。ㄆ渲衚∈Z)
A、[-kπ-
π
6
,-kπ+
π
3
]
B、[2kπ-
3
,2kπ-
π
3
]
C、[kπ-
3
,kπ-
π
6
]
D、[kπ-
π
6
,kπ+
π
3
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓C的圓心在直線2x-y-7=0上并與y軸交于兩點A(0,-4),B(0,-2),求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由方程2x|x|-y=1所確定的x,y的函數(shù)關(guān)系記為y=f(x),給出如下結(jié)論:
(1)f(x)是R上的單調(diào)遞增函數(shù);
(2)f(x)的圖象關(guān)于直線x=0對稱;
(3)對于任意x∈R,f(x)+f(-x)=-2恒成立.
其中正確的結(jié)論為
 
(寫出所有正確結(jié)論的序號).

查看答案和解析>>

同步練習(xí)冊答案