已知函數(shù)
(1)求函數(shù)f(x)的定義域,并判斷它的單調(diào)性(不用證明);
(2)若f(x)的反函數(shù)為f-1(x),證明方程f-1(x)=0有解,且有唯一解;
(3)解關(guān)于x的不等式f[x(x+1)]>1.
【答案】分析:(1)讓分母不為0且真數(shù)大于0求解即可.把f(x)分成兩個(gè)函數(shù),分別求單調(diào)性,再利用復(fù)合函數(shù)的單調(diào)性即可.
(2)令x=0,得f(0)=1.即x=0是方程f-1(x)=0的一個(gè)解,再利用反證法證明f-1(x)=0有且只有一個(gè)解;
(3)利用f(x)為定義在(-1,1)上的增函數(shù),把f[x(x+1)]>1=f(0)的符號(hào)“f”脫去,問題轉(zhuǎn)化為二次不等式問題即可.
解答:解:(1)由,及1-x≠0,得:-1<x<1,
∴f(x)的定義域?yàn)椋?1,1),…(2分)
由于在(-1,1)上都是增函數(shù),
∴f(x)在定義域(-1,1)內(nèi)是增函數(shù).      …(4分)
(2)令x=0,得f(0)=1.即x=0是方程f-1(x)=0的一個(gè)解…(7分)
設(shè)x1≠0是f-1(x)=0的另一解,則由反函數(shù)的定義知f(0)=x1≠0,
這與f(0)=1矛盾,故f-1(x)=0有且只有一個(gè)解.…(10分)
(3)由f[x(x+1)]>1=f(0),且f(x)為定義在(-1,1)上的增函數(shù),得0<x(x+1)<1,
解得,這也即為不等式f[x(x+1)]>1的解.…(16分)
點(diǎn)評(píng):本題綜合考查了函數(shù)的定義域,單調(diào)性和互為反函數(shù)的兩函數(shù)之間的關(guān)系,不等式的解法等基礎(chǔ)知識(shí).在求復(fù)合函數(shù)的單調(diào)性時(shí),遵循的原則是單調(diào)性相同復(fù)合函數(shù)為增函數(shù),單調(diào)性相反復(fù)合函數(shù)為減函數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象和y軸交于(0,1)且y軸右側(cè)的第一個(gè)最大值、最小值點(diǎn)分別為P(x0,2)和Q(x0+3π,-2).
(1)求函數(shù)y=f(x)的解析式及x0;
(2)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間;
(3)如果將y=f(x)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來的
1
3
(縱坐標(biāo)不變),然后再將所得圖象沿x軸負(fù)方向平移
π
3
個(gè)單位,最后將y=f(x)圖象上所有點(diǎn)的縱坐標(biāo)縮短到原來的
1
2
(橫坐標(biāo)不變)得到函數(shù)y=g(x)的圖象,寫出函數(shù)y=g(x)的解析式并給出y=|g(x)|的對(duì)稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(3x+φ) ( A>0,x∈(-∞,+∞),0<φ<π ) 在x=
π
12
時(shí)取得最大值4.
(1)求函數(shù)f(x)的最小正周期及解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)求函數(shù)f(x)在[0,
π
3
]
上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) (1)求函數(shù)在區(qū)間[1,]上的最大值、最小值;

(2)求證:在區(qū)間(1,)上,函數(shù)圖象在函數(shù)圖象的下方;

(3)設(shè)函數(shù),求證:。(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年湖北省仙桃一中高三(上)第二次段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)求函數(shù)f(x)的最小正周期和最小值;
(2)在給出的直角坐標(biāo)系中,用描點(diǎn)法畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省棗莊市高三上學(xué)期期末檢測(cè)理科數(shù)學(xué) 題型:解答題

(本題滿分12分)

已知函數(shù)

(1)求函數(shù)的極值點(diǎn);

(2)若直線過點(diǎn)(0,—1),并且與曲線相切,求直線的方程;

(3)設(shè)函數(shù),其中,求函數(shù)上的最小值.(其中e為自然對(duì)數(shù)的底數(shù))

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案