【題目】甲、乙兩個班級共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計(jì)成績后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) | 105 |
已知從甲、乙兩個班級中隨機(jī)抽取1名學(xué)生,其成績?yōu)閮?yōu)秀的概率為.
(1)請完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績與班級有關(guān)系?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在公差不為零的等差數(shù)列{an}中,a2=1,a2、a4、a8成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 記bn= .Tn=b1+b2+…+bn , 求Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面為梯形,,,且.
(Ⅰ)若點(diǎn)為上一點(diǎn)且,證明:平面;
(Ⅱ)求二面角的大。
(Ⅲ)在線段上是否存在一點(diǎn),使得?若存在,求出的長;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專營店經(jīng)銷某商品,當(dāng)售價不高于10元時,每天能銷售100件,當(dāng)價格高于10元時,每提高1元,銷量減少3件,若該專營店每日費(fèi)用支出為500元,用x表示該商品定價,y表示該專營店一天的凈收入(除去每日的費(fèi)用支出后的收入).
(1)把y表示成x的函數(shù);
(2)試確定該商品定價為多少元時,一天的凈收入最高?并求出凈收入的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為a的菱形ABCD中,,E,F是PA和AB的中點(diǎn)。
(1)求證: EF||平面PBC ;
(2)求E到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合P={x∈R|x2-3x+b=0},Q={x∈R|(x+1)(x2+3x-4)=0}.
(1)若b=4,存在集合M使得PMQ;
(2)若PQ,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=ln(1+x).
(1)若曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=g(x),當(dāng)x≥0時,f(x)≤ ,求t的最小值;
(2)當(dāng)n∈N*時,證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= ,若函數(shù)y=f(x)﹣kx恒有一個零點(diǎn),則k的取值范圍為( )
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com