【題目】已知f(x)= ,若函數(shù)y=f(x)﹣kx恒有一個(gè)零點(diǎn),則k的取值范圍為( )
A.k≤0
B.k≤0或k≥1
C.k≤0或k≥e
D.k≤0或k≥
【答案】B
【解析】解:由y=f(x)﹣kx=0得f(x)=kx,
作出函數(shù)f(x)和y=kx的圖象如圖,
由圖象知當(dāng)k≤0時(shí),函數(shù)f(x)和y=kx恒有一個(gè)交點(diǎn),
當(dāng)x≥0時(shí),函數(shù)f(x)=ln(x+1)的導(dǎo)數(shù)f′(x)= ,則f′(0)=1,
當(dāng)x<0時(shí),函數(shù)f(x)=ex﹣1的導(dǎo)數(shù)f′(x)=ex , 則f′(0)=e0=1,
即當(dāng)k=1時(shí),y=x是函數(shù)f(x)的切線,
則當(dāng)0<k<1時(shí),函數(shù)f(x)和y=kx有3個(gè)交點(diǎn),不滿足條件.
當(dāng)k≥1時(shí),函數(shù)f(x)和y=kx有1個(gè)交點(diǎn),滿足條件.
綜上k的取值范圍為k≤0或k≥1,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩個(gè)班級(jí)共有105名學(xué)生,某次數(shù)學(xué)考試按照“大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀”的原則統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表。
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) | 105 |
已知從甲、乙兩個(gè)班級(jí)中隨機(jī)抽取1名學(xué)生,其成績(jī)?yōu)閮?yōu)秀的概率為.
(1)請(qǐng)完成上面的列聯(lián)表;
(2)能否有把握認(rèn)為成績(jī)與班級(jí)有關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,已知4sin2 .
(1)求角C的大。
(2)若c= ,求a﹣b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(附加題,本小題滿分10分,該題計(jì)入總分)
已知函數(shù),若在區(qū)間內(nèi)有且僅有一個(gè),使得成立,則稱函數(shù)具有性質(zhì).
(1)若,判斷是否具有性質(zhì),說(shuō)明理由;
(2)若函數(shù)具有性質(zhì),試求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的最小正周期;
(2)設(shè),若在上的值域?yàn)?/span>,求實(shí)數(shù)的值;
(3)若對(duì)任意的和恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn),且,則下列結(jié)論中正確的是__________.
①平面;
②平面平面;
③三棱錐的體積為定值;
④存在某個(gè)位置使得異面直線與成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在斜率為的直線與橢圓相交于兩點(diǎn),使得 是橢圓的左焦點(diǎn)?若存在,求出直線的方程;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C經(jīng)過(guò)點(diǎn)(3,6)且焦點(diǎn)在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)直線l: 過(guò)拋物線C的焦點(diǎn)F且與拋物線C交于A,B兩點(diǎn),求A,B兩點(diǎn)間的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在區(qū)間上的最大值和最小值;
(2)若在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com