在△ABC中,BC=2,AC=
7
,B=
π
3
,則△ABC的面積為
 
分析:利用余弦定理列出關(guān)系式,將a,b,及cosB的值代入求出c的值,再由sinB的值,利用三角形面積公式即可求出三角形ABC面積.
解答:解:∵在△ABC中,BC=a=2,AC=b=
7
,B=
π
3
,
∴由余弦定理得:b2=a2+c2-2accosB,即7=4+c2-2c,
解得:c=3,
則S△ABC=
1
2
acsinB=
1
2
×2×3×
3
2
=
3
3
2

故答案為:
3
3
2
點(diǎn)評(píng):此題考查了正弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握正弦定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,|BC|=2|AB|,∠ABC=120°,則以A,B為焦點(diǎn)且過(guò)點(diǎn)C的雙曲線的離心率為(  )
A、
7
+2
3
B、
6
+2
2
C、
7
-2
D、
3
+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,(
BC
+
BA
)•
AC
=|
AC
|2
,
BA
BC
=3
|
BC
|=2
,則△ABC的面積是(  )
A、
3
2
B、
2
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=1,∠B=2∠A,則
AC
cosA
的值等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,BC=6,BC邊上的高為2,則
AB
AC
的最小值為
-5
-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•石景山區(qū)二模)在△ABC中,BC=2,AC=
7
B=
π
3
,則AB=
3
3
;△ABC的面積是
3
3
2
3
3
2

查看答案和解析>>

同步練習(xí)冊(cè)答案