11.(Ⅰ)計算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75的值.
(Ⅱ)計算lg25+lg2lg50+2${\;}^{1+lo{g}_{2}5}$的值.

分析 (1)利用指數(shù)運算法則即可得出;
(2)利用對數(shù)運算法則即可得出.

解答 解:(1)原式=$0.{3}^{4×\frac{1}{4}}$+${2}^{2×(-\frac{3}{4})×2}$+${2}^{\frac{3}{2}×(-\frac{4}{3})}$-24×(-0.75)
=0.3+$\frac{1}{8}$+$\frac{1}{4}$-$\frac{1}{8}$=0.55.
(2)原式=lg25+lg2(lg5+1)+$2×{2}^{lo{g}_{2}5}$
=lg5(lg5+lg2)+lg2+2×5
=lg5+lg2+10
=11.

點評 本題考查了指數(shù)與對數(shù)運算法則,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.如圖,邊長為2的正方形ABCD繞AB邊所在直線旋轉(zhuǎn)一定的角度(小于180°)到ABEF的位置.
(1)若∠CBE=120°,求三棱錐B-ADF的外接球的表面積;
(2)若K為線段BE上異于B,E的點,CE=2$\sqrt{2}$.設(shè)直線AK與平面BDF所成角為φ,當30°≤φ≤45°時,求BK的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在等比數(shù)列{an}中,a1=3,a3=12,則a5=( 。
A.48B.-48C.±48D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若a=20.1,b=0.12,c=log20.1,則(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知f(x)=(x-a)(x-b)-2,(a<b)的兩個零點分別為α,β,(α<β)則(  )
A.a<α<b<βB.α<a<b<βC.a<α<β<bD.α<a<β<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.數(shù)列{an},{bn}中,a1=-4,b1=1,an+1=2an+bn(n∈N*),且數(shù)列$\left\{{\frac{a_n}{2^n}}\right\}$是等差數(shù)列.
(1)求{bn}的前n項Tn
(2)設(shè)數(shù)列{an}的前n項和為Sn,求使Sn最小的n的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,且經(jīng)過點A(1,$\frac{3}{2}$).
(Ⅰ)求橢圓C的方程;
(Ⅱ)過右焦點且斜率不為0的直線l與橢圓C交于M,N兩不同點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)數(shù)列{an}為單調(diào)遞增的等差數(shù)列,a1=1,且a3,a6,a12依次成等比數(shù)列.
(1)求an;
(2)若bn=$\frac{{2}^{a}n}{{{(2}^{a}n)}^{2}+3{•2}^{a}n+3}$,設(shè)數(shù)列{bn}的前n項和Tn,求證:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.關(guān)于x的函數(shù)f(x)=tan(x+φ)有以下幾種說法:
①對任意的φ,f(x)都是非奇非偶函數(shù);
②f(x)的圖象關(guān)于($\frac{π}{2}$-φ,0)對稱;
③f(x)的圖象關(guān)于(π-φ,0)對稱;
④f(x)是以π為最小正周期的周期函數(shù).
其中不正確的說法的序號是①.

查看答案和解析>>

同步練習冊答案