已知橢圓經(jīng)過點(diǎn)A(2,1),離心率為,過點(diǎn)B(3,0)的直線l與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.
【答案】分析:(Ⅰ)根據(jù)離心率為,可設(shè),則,利用經(jīng)過點(diǎn)A(2,1)可得,從而可求橢圓方程;
(Ⅱ)由題意可知直線l的斜率存在,設(shè)直線l的方程為y=k(x-3),與橢圓方程聯(lián)立,利用韋達(dá)定理及用坐標(biāo)表示向量,即可確定的取值范圍.
解答:解:(Ⅰ)由離心率為,可設(shè),則
因?yàn)?img src="http://thumb.1010pic.com/pic6/res/gzsx/web/STSource/20131024190139965195545/SYS201310241901399651955018_DA/10.png">經(jīng)過點(diǎn)A(2,1)
所以,解得,所以a2=6,b2=3
所以橢圓方程為…(4分)
(Ⅱ)由題意可知直線l的斜率存在,設(shè)直線l的方程為y=k(x-3),
直線l與橢圓的交點(diǎn)坐標(biāo)為M(x1,y1),N(x2,y2)…(5分)
,消元整理得:(1+2k2)x2-12k2x+18k2-6=0…(7分)
△=(12k22-4(1+2k2)(18k2-6)>0得 0≤k2<1…(8分)
…(9分)
=(x1-3,y1)•(x2-3,y2)=(x1-3)(x2-3)+y1y2…(10分)
=(1+k2)[x1x2-3(x1+x2)+9]==…(11分)
因?yàn)?≤k2<1,所以
所以的取值范圍是(2,3].…(14分)
點(diǎn)評:本題考查橢圓的標(biāo)準(zhǔn)方程與幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查向量知識的運(yùn)用,解題的關(guān)鍵是直線與橢圓方程的聯(lián)立,利用韋達(dá)定理進(jìn)行解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:北京模擬題 題型:解答題

已知橢圓經(jīng)過點(diǎn)A(2,1),離心率為,過點(diǎn)B(3,0)的直線l與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省宜春市高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓經(jīng)過點(diǎn)A(2,1),離心率為.過點(diǎn)B(3,0)的直線l與橢圓C交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)設(shè)直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市門頭溝區(qū)高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

已知橢圓經(jīng)過點(diǎn)A(2,1),離心率為,過點(diǎn)B(3,0)的直線l與橢圓交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓的方程;
(Ⅱ)若,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市高考數(shù)學(xué)仿真押題試題2(理科)(解析版) 題型:解答題

已知橢圓經(jīng)過點(diǎn)A(2,1),離心率為.過點(diǎn)B(3,0)的直線l與橢圓C交于不同的兩點(diǎn)M,N.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求的取值范圍;
(Ⅲ)設(shè)直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年北京市朝陽區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

已知橢圓經(jīng)過點(diǎn)A(2,1),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)(3,0)的直線l與橢圓C交于不同的兩點(diǎn)M,N,設(shè)直線AM和直線AN的斜率分別為kAM和kAN,求證:kAM+kAN為定值.

查看答案和解析>>

同步練習(xí)冊答案