【題目】下列說法正確的是______.

①若直線與直線互相垂直,則

②若兩點到直線的距離分別是,,則滿足條件的直線共有3

③過兩點的所有直線方程可表示為

④經(jīng)過點且在軸和軸上截距都相等的直線方程為

【答案】

【解析】

A.根據(jù)直線垂直的等價條件進(jìn)行判斷;
B.通過判斷以為圓心,以為半徑的圓和以為圓心,以為半徑的圓的公切線的條數(shù)來判斷;
C.當(dāng)直線和坐標(biāo)軸平行時,不滿足條件.
D.過原點的直線也滿足條件.

解:A.當(dāng)時,兩直線方程分別為,此時也滿足直線垂直,故A錯誤,
B.為圓心,以為半徑的圓和以為圓心,以為半徑的圓,兩圓心的距離為,故兩圓外切,兩圓的公切線有3條,則則滿足條件的直線共有3條,故B正確;
C.當(dāng)時直線方程為,此時直線方程不成立,故C錯誤,
D.若直線過原點,則直線方程為,此時也滿足條件,故D錯誤,
故答案為:②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)

如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,DAB

中點.

(1) 求證: AC⊥BC1

(2) 求證:AC1平面CDB1

(3) 求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題不正確的是( 。

A.研究兩個變量相關(guān)關(guān)系時,相關(guān)系數(shù)r為負(fù)數(shù),說明兩個變量線性負(fù)相關(guān)

B.研究兩個變量相關(guān)關(guān)系時,相關(guān)指數(shù)R2越大,說明回歸方程擬合效果越好.

C.命題xR,cosx≤1”的否定命題為x0R,cosx01”

D.實數(shù)a,b,ab成立的一個充分不必要條件是a3b3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系, 經(jīng)過原點的直線分成左、右兩部分,記左、右兩部分的面積分別為 ,取得最小值時,直線的斜率(

A.等于1B.等于C.等于D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓關(guān)于直線對稱且過點,直線過定點.

1)證明:直線與圓相交;

2)記直線與圓的兩個交點為,.

①若弦長,求直線方程;

②求面積的最大值及面積的最大時的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點,兩個點列 滿足:① ;②

1)求點的坐標(biāo);

(2)求向量的坐標(biāo);

3)對于正整數(shù)k,用表示無窮數(shù)列 中從第k+1項開始的各項之和,用表示無窮數(shù)列 中從第k項開始的各項之和,即, 若存在正整數(shù)kp,使得,求k,p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P和非零實數(shù),若兩條不同的直線 均過點P,且斜率之積為,則稱直線是一組“共軛線對”,如直 是一組“共軛線對”,其中O是坐標(biāo)原點.

(1)已知是一組“共軛線對”,求的夾角的最小值;

(2)已知點A(0,1)、點和點C(1,0)分別是三條直線PQ,QR,RP上的點(A,B,CP,Q,R均不重合),且直線PR,PQ是“ 共軛線對”,直線QP,QR是“共軛線對”,直線RP,RQ是“共軛線對”,求點P的坐標(biāo);

(3)已知點 ,直線是“共軛線對”,當(dāng)的斜率變化時,求原點O到直線的距離之積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,若,求的取值范圍;

2)若定義在上奇函數(shù)滿足,且當(dāng)時,,求上的解析式;

3)對于(2)中的,若關(guān)于的不等式上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案