精英家教網 > 高中數學 > 題目詳情

【題目】已知2016-2018年文科數學全國Ⅱ卷中各模塊所占分值百分比大致如圖所示:

給出下列結論:

①選修1-1所占分值比選修1-2小;

②必修分值總和大于選修分值總和;

③必修1分值大致為15分;

④選修1-1的分值約占全部分值的.

其中正確的是( )

A. ①②B. ①②③C. ②③④D. ②④

【答案】C

【解析】

由對圖表信息的分析、成立結合百分比逐一運算即可得解.

解:對于①,選修1-1所占分值比為選修1-2所占分值比為即選修1-1所占分值比選修1-2大;

對于②,必修分值總和為大于選修分值總和必修分值總和大于選修分值總和;

對于③,必修1分值大致為150=15分;

對于④,選修1-1的分值約占全部分值的=.

即正確的是②③④,

故選C.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為為參數),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(1)寫出直線的普通方程與曲線的直角坐標方程;

(2)設點.若直線與曲線相交于不同的兩點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,若過且傾斜角為的直線交,兩點,滿足.

(1)求拋物線的方程;

(2)若上動點,,軸上,圓內切于,求面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數fx)=2ax2+2bx,若存在實數x0∈(0t),使得對任意不為零的實數a,b均有fx0)=a+b成立,則t的取值范圍是_____

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是國際田聯的標準400米跑道,它的最內側跑道的邊線是由兩根84.39米的平行直線和兩段半徑36.80米的半圓組成,每根跑道寬1.22米(道與道間的劃線寬度忽略不計).比賽時運動員從下方標有數字處出發(fā).為了比賽公平,外道的運動員的起跑點較內道的會有一定的提前量,使得所有運動員跑過的路程完全一致.假設每位運動員都會沿著自己道次的最內側跑.

1)試給出400米比賽各道次提前量關于道次之間的函數關系,并完成下表(精確到0.01米)

2800米比賽的規(guī)則是從出發(fā)處按道次跑完第一個彎道后可以開始并道賽跑,請你設計第8道選手的最優(yōu)跑步路線并給出他起跑的提前量應該是多少.

道次

2

3

4

5

6

7

8

提前量(米)

7.67

15.33

23.00

30.66

38.33

46.00

53.66

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知為定義在實數集上的函數,把方程稱為函數的特征方程,特征方程的兩個實根、),稱為的特征根.

(1)討論函數的奇偶性,并說明理由;

(2)已知為給定實數,求的表達式;

(3)把函數,的最大值記作,最小值記作,研究函數的單調性,令,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(Ⅰ)判斷并證明的單調性;

(Ⅱ)是否存在實數,使函數為奇函數?證明你的結論;

(Ⅲ)在(Ⅱ)的條件下,當時,恒成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱錐中,,,,,為線段的中點,是線段上一動點

(1)時,求證:

(2)的面積最小時,求三棱錐的體積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,為自然對數的底數).

(1)討論函數的單調區(qū)間;

(2)當時,恒成立,求實數的最小值.

查看答案和解析>>

同步練習冊答案