已知圓(x-2)2+y2=1經(jīng)過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),則此橢圓的離心率e=(  )
分析:一個(gè)焦點(diǎn)為F(1,0),一個(gè)頂點(diǎn)為F(3,0),可得 c=1,a=3,從而得到此橢圓的離心率.
解答:解:圓(x-2)2+y2=1經(jīng)過橢圓
x2
a2
+
y2
b2
=1 (a>b>0)的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),
∴一個(gè)焦點(diǎn)為F(1,0),一個(gè)頂點(diǎn)為F(3,0),可得 c=1,a=3,
從而得到此橢圓的離心率
1
3

故選D.
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,橢圓的簡單性質(zhì),判斷c,a是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2、已知圓(x-2)2+(y+1)2=16的一條直徑通過直線x-2y+3=0被圓所截弦的中點(diǎn),則該直徑所在的直線方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x+2)2+y2=36的圓心為M,設(shè)A為圓上任一點(diǎn),N(2,0),線段AN的垂直平分線交MA于點(diǎn)P,則動(dòng)點(diǎn)P的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓(x-2)2+(y-2)2=16與直線y=kx交于A,B兩點(diǎn),O是坐標(biāo)原點(diǎn).若
OA
+
OB
=
0
,則|AB|=
4
2
4
2

查看答案和解析>>

同步練習(xí)冊答案