11.已知函數(shù)f(x)=ax-lnx,當(dāng)x∈(0,e](e為自然常數(shù))時(shí),函數(shù)f(x)的最小值為3,則a的值為( 。
A.eB.e2C.2eD.2e2

分析 先求出其導(dǎo)函數(shù),通過分類討論分別求出導(dǎo)數(shù)為0的根,以及單調(diào)性和極值,再與f(x)的最小值是3相結(jié)合,即可得出結(jié)論.

解答 解:函數(shù)的定義域?yàn)椋?,+∞),函數(shù)的導(dǎo)數(shù)${f^/}(x)=\frac{ax-1}{x}$,
①當(dāng)a≤0時(shí),f′(x)<0,f(x)在x∈(0,e)上單調(diào)遞減f(e)<0,與題意不符;
②當(dāng)a>0時(shí),f′(x)=0的根為 $\frac{1}{a}$
當(dāng) $0<\frac{1}{a}<e$時(shí),$f(x)在x∈({0,\frac{1}{a}})上單調(diào)遞減,在({\frac{1}{a},e})上單調(diào)遞增$$f{(x)_{min}}=f({\frac{1}{a}})=1-ln\frac{1}{a}=3$,解得a=e2,
③當(dāng) $\frac{1}{a}≥e$時(shí),f′(x)<0,f(x)在x∈(0,e)上單調(diào)遞減f(e)<0,與題意不符;
綜上所述a=e2,
故選:B

點(diǎn)評 本題主要考查導(dǎo)數(shù)的應(yīng)用.利用函數(shù)單調(diào)性最值和導(dǎo)數(shù)的關(guān)系,利用分類討論的思想進(jìn)行求解是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)a>0,b>0,求證:lg(1+$\sqrt{ab}$)≤$\frac{1}{2}$[lg(1+a)+lg(1+b)].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=-2xlnx+x2-2ax+a2,其中a>0.
(Ⅰ)設(shè)g(x)是f(x)的導(dǎo)函數(shù),討論g(x)的單調(diào)性.
(Ⅱ)證明:存在a∈(0,1),使得f(x)≥0在x∈(0,+∞)上恒成立,且f(x)=0在區(qū)間(1,+∞)內(nèi)有唯一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.極坐標(biāo)與直角坐標(biāo)系xOy有相同的長度單位,以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸.曲線C1的極坐標(biāo)方程為ρ-2cosθ=0,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=t+m}\\{y=2t-1}\end{array}\right.$(t是參數(shù),m是常數(shù))
(Ⅰ)求C1的直角坐標(biāo)方程和C2的普通方程;
(Ⅱ)若C2與C1有兩個(gè)不同的公共點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=AB=BC=1,AD=2,E為PD的中點(diǎn).
(Ⅰ)求證:CE∥面PAB
(Ⅱ)求證:平面PAC⊥平面PDC
(Ⅲ)求直線EC與平面PAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙兩家商場對同一種商品開展促銷活動(dòng),對購買該商品的顧客兩家商場的獎(jiǎng)勵(lì)方案如下:
甲商場:顧客轉(zhuǎn)動(dòng)如圖所示圓盤,當(dāng)指針指向陰影部分(圖中四個(gè)陰影部分均為扇形,且每個(gè)扇形圓心角均為15度,邊界忽略不計(jì))即為中獎(jiǎng).
乙商場:從裝有3個(gè)白球和3個(gè)紅球的盒子中一次性摸出2球(這些球除顏色外完全相同),如果摸到的是2個(gè)紅球,即為中獎(jiǎng).
(1)試問:購買該商品的顧客在哪家商場中獎(jiǎng)的可能性大?請說明理由;
(2)記在乙商場購買該商品的顧客摸到紅球的個(gè)數(shù)為ξ,求ξ的期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某市規(guī)定,高中學(xué)生三年在校期間參加不少于80小時(shí)的社區(qū)服務(wù)才合格.教育部門在全市隨機(jī)抽取200位學(xué)生參加社區(qū)服務(wù)的數(shù)據(jù),按時(shí)間段,[75,80),[80,85),[85,90),[90,95)[95,100],(單位:小時(shí))進(jìn)行統(tǒng)計(jì),其頻率分布直方圖如圖所示.

(1)求抽取的200位學(xué)生中,參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的學(xué)生人數(shù),并估計(jì)從全市高中學(xué)生中任意選取一人,其參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的概率;
(2)從全市高中學(xué)生(人數(shù)很多)中任意選取3位學(xué)生,記ξ為3位學(xué)生中參加社區(qū)服務(wù)時(shí)間不少于90小時(shí)的人數(shù).試求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ和方差Dξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知偶函數(shù)f(x)的定義域?yàn)椋?1,0)∪(0,1),且f($\frac{1}{2}$)=0,當(dāng)0<x<1時(shí),不等式($\frac{1}{x}$-x)f′(x)•ln(1-x2)>2f(x)恒成立,那么不等式f(x)<0的解集為( 。
A.{x|-$\frac{1}{2}$<x<0或$\frac{1}{2}$<x<1}B.{x|-1<x<-$\frac{1}{2}$或$\frac{1}{2}$<x<1}
C.{x|-$\frac{1}{2}$<x<$\frac{1}{2}$且x≠0}D.{x|-1<x<-$\frac{1}{2}$或0<x<$\frac{1}{2}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)為F1,F(xiàn)2,過點(diǎn)F1的直線與橢圓C相交于A,B兩點(diǎn),若$\overrightarrow{A{F}_{1}}$=$\frac{3}{2}$$\overrightarrow{{F}_{1}B}$,∠AF2B=90°,則橢圓C的離心率是$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步練習(xí)冊答案