20.在△ABC中,已知B=60°,c=2,1≤a≤4,則sinC的取值范圍是[$\frac{1}{2}$,1].

分析 利用余弦定理求出b與a的關(guān)系,利用正弦定理推出sinC的表達(dá)式,然后求解范圍.

解答 解:由余弦定理可得:b2=a2+c2-2accosB=a2-2a+4,
∴b=$\sqrt{{a}^{2}-2a+4}$,
于是由正弦定理可得sinC=$\frac{csinB}$=$\frac{2×\frac{\sqrt{3}}{2}}{\sqrt{{a}^{2}-2a+4}}$=$\frac{\sqrt{3}}{\sqrt{{a}^{2}-2a+4}}$,
∵1≤a≤4,$\sqrt{{a}^{2}-2a+4}$=$\sqrt{({a-1)}^{2}+3}$∈[$\sqrt{3}$,2$\sqrt{3}$],
從而得到sinC的取值范圍是:[$\frac{1}{2}$,1].
故答案為:[$\frac{1}{2}$,1].

點(diǎn)評(píng) 本題主要考查了兩角和與差的余弦函數(shù)公式,考查了余弦定理和正弦定理的綜合應(yīng)用,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.m∈R,“函數(shù)y=2x+m-1沒有零點(diǎn)”是“對(duì)任意的x>1,logmx>0恒成立”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.正四棱柱ABCD-A1B1C1D1中,AA1=2AB,E為AA1的中點(diǎn).
(1)求異面直線BE與CD1所成角的余弦值.
(2)求EC1與平面DCC1D1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.對(duì)于大于1的自然數(shù)m的三次冪可用奇數(shù)進(jìn)行以下方式的“分裂”:23=$\left\{\begin{array}{l}{3}\\{5}\end{array}\right.$,33=$\left\{\begin{array}{l}{7}\\{9}\\{11}\end{array}\right.$,43=$\left\{\begin{array}{l}{13}\\{15}\\{17}\\{19}\end{array}\right.$,….仿此,若m3的“分裂數(shù)”中有一個(gè)是413,則m=20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖所示,在多面體ABCDEF中,四邊形ABCD為矩形,底面CDEF為直角梯形,且平面ABCD⊥平面CDEF,CF∥DE,CD⊥DE,AB=2BC=2CF=2,DE=3CF.
(1)試問:線段AE上是否存在一點(diǎn)P,使得PF∥平面ABCD?請(qǐng)說明理由;
(2)若P是AE的中點(diǎn),求三棱錐P-CEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知f(x)是定義在R上的以3為周期的奇函數(shù),且f(2)=0,則方程f(x)=0在區(qū)間(0,6)內(nèi)解的個(gè)數(shù)的最小值是(  )
A.2B.3C.4D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在圓柱EF中,底面圓的半徑為2,母線長(zhǎng)為6,$\widehat{AB}$和$\widehat{CD}$的長(zhǎng)均為所在圓的周長(zhǎng)的$\frac{1}{6}$,若沿著面ABCD將圓柱截開,試求所截得的體積較小的幾何體的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.一個(gè)金魚缸,現(xiàn)已注滿水.有大、中、小三個(gè)假山,第一次把小假山沉入水中,第二次把小假山取出,把中假山沉入水中,第三次把中假山取出,把小假山和大假山一起沉入水中,現(xiàn)知道每次溢出水量的情況是:第一次是第二次的$\frac{1}{3}$.第三次是第二次的2倍,問三個(gè)假山體積之比(  )
A.1:3:5B.1:4:9C.3:6:7D.6:7:8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l經(jīng)過點(diǎn)A(1,3),求:
(1)直線l在兩坐標(biāo)軸上的截距相等的直線方程;
(2)直線l與兩坐標(biāo)軸的正半軸圍成三角形面積最小時(shí)的直線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案